Mathématiques avec Python et Ruby/Systèmes congruentiels en Python

Rallye mathématique de la RéunionModifier

Sujet 2005, Exercice 2Modifier

Énoncé
Pour organiser une grande manifestation sportive, le professeur d’éducation physique doit rassembler sur le stade un important groupe d’élèves. Le nombre d’élèves est compris entre 2 800 et 2 900. Il en profite pour leur faire remarquer que, regroupés par 2, puis par 3, puis par 4, puis par 5, puis par 6, il en reste toujours 1 ; mais, ô miracle, en se regroupant par 7, il ne reste personne.

On demande combien d'élèves il y a au total.

On peut utiliser une boucle avec plein de tests pour détecter les solutions mais aussi les ensembles. C'est ce qu'on va faire ici.

Construction de l'ensemble 2 par 2Modifier

On commence par construire la liste des nombres entre 2800 et 2900 tels que 2 par 2, il en reste 1: Ces nombres constituent une suite arithmétique de raison 2.

s2=[n for n in range(2800,2900) if n%2==1]

print(len(s2))

À ce stade, il y a beaucoup de candidats possibles:

{2817, 2819, 2821, 2823, 2825, 2827, 2829, 2831, 2833, 2835, 2837, 2839, 2841, 2843, 2845, 2847, 2849, 2851, 2853, 2855, 2857, 2859, 2861, 2863, 2865, 2867, 2869, 2871, 2873, 2875, 2877, 2879, 2881, 2883, 2885, 2887, 2889, 2891, 2893, 2895, 2897, 2899, 2801, 2803, 2805, 2807, 2809, 2811, 2813, 2815}

Épuration 3 par 3Modifier

Maintenant on va construire un ensemble analogue s3 pour les nombres tels que, 3 par 3, il en reste 1, choisis parmi les nombres de s2:

s3=[n for n in s2 if n%3==1]

print(s3)

Il en reste déjà moins:

{2881, 2851, 2821, 2887, 2857, 2827, 2893, 2863, 2833, 2899, 2869, 2803, 2839, 2809, 2875, 2845, 2815}

Cas du nombre 4Modifier

Cette fois-ci, dans s4 on met les nombres précédents tels que pris 4 par 4, il en reste 1:

s4=[n for n in s3 if n%4==1]

print(s4)

{2881, 2821, 2857, 2893, 2833, 2869, 2809, 2845}

Ça se précise!

Avec 5Modifier

Maintenant on va de 5 en 5:

s5=[n for n in s4 if n%5==1]

print(s5)

{2881, 2821}

Il ne reste que deux nombres à tester!

Avec 6Modifier

On pourrait les tester l'un après l'autre, mais aussi faire pareil qu'avant (on y prend goût !):

s6=[n for n in s5 if n%6==1]

print(s6==s5)


Aucun changement, toujours deux solutions:

{2881, 2821}

Dernière étapeModifier

Autant continuer sur la même voie:

solutions=[n for n in s6 if n%7==0]

print(solutions)



Ce qui donne la réponse (on constate qu'elle est unique) à la question de l'énoncé.

Sujet 2007, Exercice 3Modifier

 
Énoncé
Chaque semaine, Jean ramasse entre 40 et 200 œufs qu’il va vendre au marché.

Ce soir, veille de marché, il est perplexe.

• S’il met ses œufs dans des emballages de 6, il en reste 2.

• S’il utilise des emballages de 10, il en reste encore 2.

• Il me faudrait, dit-il, des emballages de 8 pour tout contenir exactement.

On demande combien il y a d'œufs en tout.

Par 6Modifier

On commence par examiner les nombres tels que, pris 6 par 6, il en reste toujours 2:

s6=[n for n in range(40,200) if n%6==2]

print(len(s6))

26 nombres à examiner, courage!

Par 10Modifier

s10=[n for n in s6 if n%10==2]

print(s10)

Plus que 5 nombres à examiner!

Par 8Modifier

solutions=[n for n in s10 if n%8==0]

print(solutions)

Comme une seule valeur de n est affichée, c'est la seule qui a réussi tous les tests, et c'est donc l'unique solution au problème.