Mathématiques avec Python et Ruby/Droites en Ruby
La droite peut être définie à partir d'une de ses équations, mais aussi à partir de deux points. Et comme on a vu précédemment comment on peut créer en Ruby un objet point, on va voir comment on peut s'en servir pour gérer des droites sous Ruby.
DéfinitionModifier
Là encore, on va définir une classe Droite possédant, lors de son instanciation, deux points:
class Droite
def initialize(a,b)
@a,@b=a,b
end
VecteursModifier
Vecteur directeurModifier
def directeur
@a.vecteur(@b)
end
On obtient le vecteur directeur de d par d.directeur
AlignementModifier
Pour savoir si le point m est sur la droite d, on peut rajouter ce test:
def IsOnLine(d)
vecteur(d.a).colin(d.directeur)
end
mais on le rajoute dans l'objet Point, puisque c'est une propriété du point...
Vecteur normalModifier
Le vecteur normal s'obtient en choisissant ses coordonnées pour que le produit scalaire avec le vecteur directeur soit nul:
def normal
Vecteur.new(-self.directeur.y,self.directeur.x)
end
Le vecteur normal s'obtient avec d.normal et permet facilement d'avoir l'équation cartésienne ci-dessous.
ÉquationsModifier
Équation cartésienneModifier
def cartesienne
'('+self.normal.x.to_s+')x+('+self.normal.y.to_s+')y='+(self.normal.x*@a.x+self.normal.y*@a.y).to_s
end
Pour afficher l'équation cartésienne de d, on entre
puts(d.cartesienne)
Équation réduiteModifier
Comme il y a des divisions à effectuer, on a intérêt à faire appel à mathn':
require 'mathn'
Coefficient directeurModifier
def cd
self.directeur.y/self.directeur.x
end
Ordonnée à l'origineModifier
def oalo
@a.y-self.cd*@a.x
end
ÉquationModifier
L'équation réduite se définit par
def reduite
'y='+self.cd.to_s+'x+('+self.oalo.to_s+')'
end
et s'obtient par d.reduite.
Comparaison de deux droitesModifier
ParallélismeModifier
Deux droites sont parallèles lorsque leurs vecteurs directeurs sont colinéaires. Mais aussi (sous réserve qu'elles en aient) lorsqu'elles ont le même coefficient directeur:
def parallele(d)
self.cd==d.cd
end
Pour savoir si deux droites d1 et d2 sont parallèles, on fait
puts(d1.parallele(d2))
PerpendicularitéModifier
Deux droites sont perpendiculaires si et seulement si leurs vecteurs normaux sont orthogonaux:
def perpendiculaire(d)
self.normal.ortho(d.normal)
end
On aurait aussi pu chercher si le produit de leurs coefficients directeurs est égal à -1.
IntersectionModifier
Pour calculer les coordonnées du point d'intersection de deux droites, on résout un système.
ExempleModifier
Dans l'exemple des chapitres précédents, on peut regarder si les deux droites (CA) et (CB) sont perpendiculaires:
a=Point.new(-1,3)
b=Point.new(5,1)
c=Point.new(1,5)
d1=Droite.new(c,a)
d2=Droite.new(c,b)
puts(d1.perpendiculaire(d2))