Mécanique, enseignée via l'Histoire des Sciences/La chute ralentie sur plan incliné
Leçon : la chute ralentie le long d'un plan incliné
Cette leçon est une des plus importantes du cours car on y présente la philosophie d'un physicien en action.
Pour faire bref, disons que Galilée reprend l'idée de Stevin que pour une masse glissant sans frottement sur un plan incliné d'angle , l'accélération était g .sin .
Tout le reste est semblable aux paragraphes de la leçon chute libre avec a = g .
[Note historique: il est évident qu'obtenir un glissement sans frottement est quasi-impossible. On se demande alors si Galilée a vraiment vérifié expérimentalement sa loi; bien sûr la notation g est un anachronisme, puisque les unités n'existaient pas encore à cette époque ; mais ce n'est pas cela qui est en cause. Bien sûr, il y a aussi des prédecesseurs de Stevin].
Expérience de pensée
modifierLa loi : accélération = g. sin dite loi des cordes est typiquement une gedanken-loi . Voici pourquoi Galilée y "croyait" :
imaginons 2 pistes de skate-board face à face d'angle différents et . Imaginons qu'une planche de skate "soit comme" une luge sans frottement(les petites roues bien huilées servant à cela). Le planchiste partant du haut de la piste de gauche , nonobstant la résistance de l'air, remonte exactement de la même hauteur sur la piste de droite; pas plus disait Galilée, sinon il suffirait de mettre des pierres sur le skate , on monterait progressivement des pierres en recommençant, aussi haut que l'on voudrait, en allant de gauche à droite : cela se saurait depuis longtemps ! Mais pas moins, a dit Galilée: car s'il n'y a pas de frottement du tout, l'opération inverse se produisant, on pourrait amener les pierres plus haut de droite à gauche.
La conclusion fût donc : il n'y a aucun moyen (sans frottement) d'aller plus haut ou plus bas. Ce genre de "raisonnement" est très puissant. Il est gedanken , car il y a toujours la résistance de l'air à vaincre ; mais Galilée y avait déjà répondu : "je me place dans la situation idéale, où elle n'existe pas. Je ne dis pas que c'est possible, mais je l'imagine possible".
Évidemment , en prenant très petit, cela permet d'amener les pierres très loin à droite, et même très, très loin si est très très petit, et même si est nul , alors les pierres sont lancées à une vitesse Vo et ne peuvent pas s'arrêter : on dit qu'elles ont de l'INERTIE : toute personne qui a manipulé une brouette de terre le sait bien : en allant assez vite, avec la vitesse Vo , il pourra remonter , en gros, à la hauteur h = Vo²/2g , grâce à la quantité d'inertie (cela s'appelle la masse en physique) de la brouette(et il est très bizarre-et cela s'appelle la Loi de Galilée- que cette hauteur soit indépendante de la quantité d'inertie : cette apparente contradiction est choquante. C'est le grand mérite de Galilée d'avoir insisté sur ce point : il n'y a pas de contradiction!).
Il faut que tout ceci , avec les lois du choc (leçon choc frontal) forme un système de lois auto-cohérentes : il restera à les vérifier expérimentalement, en se rapprochant aussi parfaitement que possible de ces conditions idéales.
Aparté : La pensée philosophique de Galilée :
modifierAinsi se présente Galilée :
Je suis un philosophe des choses de la Nature ; je pense et je dialogue sur des idées et des concepts, et je vais aussi loin que je peux dans les conséquences MATHÉMATIQUES de ce que je dis : s'il n'y a pas d'auto-contradiction , je continue , car cette construction , ce JEU de l'esprit est BEAU et m'enchante.
Évidemment , cela n'est admissible que si l'expérience le CONFIRME.
Un système auto-cohérent dans TOUT ce à quoi il peut conduire et que l'expérience confirme , voilà une partie du sens des DIALOGUES de Galilée en 1638.
Certes, LORD IS SUBTLE (dixit Einstein):le Grand Horloger qui a minutieusement donné ce système de compréhension de la Nature à l'Homme est subtil . Même aujourd'hui encore , des physiciens imaginent des gedanken-experiments pour tester l'auto-cohérence de cette "re-présentation" du monde.
Le monde existe avec ses Lois : le philosophe de la Nature doit mener une enquête très serrée pour les découvrir, "soulever un coin du voile" ; dans cette QUÊTE , les mathématiques l'aident beaucoup à les re-présenter.
Les a priori aident très peu.Il faut de temps à autre les bousculer : jamais personne n'a vu une brouette lancée à Vo continuer éternellement à transporter ses pierres vers la droite ;
et pourtant chacun sent bien, qu'on n'a pas à laisser un poids lourd chargé dans une descente : il y aura du dégât à l'arrivée, s'il ne peut freiner! on installe même sur les descentes d'autoroute des voies de dégagement pour cela.
Cette tension permanente entre un réel épuré, re-construit et le réel vécu est LA caractéristique fondamentale du philosophe de la Nature : ces axiomes seront des Principes. S'ils s'avèrent auto-logiquement faux ou en contradiction avec l'expérience menée parfois de manière très sophistiquée dans des laboratoires spécialisés (par exemple des tours à vide aussi vides que possible pour vérifier la loi de chute), alors il faudra ABANDONNER ces Principes , et les modifier de manière à obtenir une nouvelle présentation de la Nature, plus précise que la première.
L'exemple est resté fort célèbre : après que Galilée eût énoncé cette manière de discourir, on a construit la mécanique ici décrite (dite newtonienne). En 1905 , Einstein a démontré qu'elle était logiquement fausse, pour le mouvement : aucune particule ne peut aller plus vite que la vitesse de la lumière (et cela est parfaitement vérifié expérimentalement). Et il a rebâti toute une autre mécanique en 1905. La réaction fût la même que du temps de Galilée : on mît un "certain temps" à le croire , comme pour les dialogues et les discours de Galilée. Mais sa théorie était auto-cohérente, de très belle architecture et surtout expliquait mieux la Nature aux très grandes vitesses.
Il a fallu abandonner certaines choses dites par Galilée , mais le schéma de base du raisonnement [ la tension entre le penser auto-cohérent re-présentant la Nature et l'expérience] n'a absolument jamais été remis en cause , bien au contraire : Galilée est ENCORE présent parmi nous.
Résumé: loi des cordes : a = g.sin
modifierExercices
modifierEn combinant les leçons 1 , 2 et 3 , il y a beaucoup de jolis exercices ; on supposera toujours qu'à la jointure entre deux plans inclinés, un alésage permet de passer la jointure sans perdre de vitesse.
Exercice : triangle égyptien
modifierDeux skieurs Tortor et Jeannot partent de D (départ) pour arriver en A (arrivée) : T suit la piste rectiligne DA de longueur 5. Mais J est un fou de la glisse : il se laisse tomber quasi-verticalement de D en O (DO = 3) , et glisse horizontalement selon OA = 4 : lequel arrive premier ?
J met le temps To pour parcourir DO de longueur 3 et mettra le temps (4/3)/2To pour parcourir OA : soit au total : To ( 1+ 2/3)= 5/3 To . Tortor met le temps To ( 5/3) pour parcourir DA ( par le théorème de Merton : le mouvement moyen est à la moitié de la vitesse finale ) Les deux arriveront donc en m temps ! On laisse le soin au lecteur de modifier le parcours pour voir gagner ou bien Jeannot ou bien Tortor.
Parcours d'Alexandre le Bienheureux
modifierOn convient d'appeler ainsi un parcours tel que chaque étape dure le même temps. Évidemment comme, dans la réalité, il y a un peu de frottement, un mécanisme extérieur écrase la mémoire du premier tour et injecte la particule au début du parcours. En voici un assez jubilatoire: à vous de jouer!
Un petit skate (pour l'instant , on le considérera comme un palet glissant sans frottement ; on verra la différence plus tard) est lancé à la vitesse Vo sur une voie horizontale de longueur a ; il met donc le temps T = a/Vo à la parcourir. Et voilà , c'est parti , à vous d'imaginer ce qui va arriver à ce petit esquif !
Un exemple :
- il descend un plan incliné d'un petit angle alpha donné (enroulé en spirale (mais cela ne change rien ici)sur une hauteur h.
- il arrive en terrain plat de longueur b ,
- remonte une piste de longueur c et arrive à la hauteur h/2 ,
- à nouveau un terrain plat de longueur d ,
- tombe dans le vide sur une plaque parfaitement rebondissante située en aval à la distance l et
- rebondit dans un petit entonnoir et en sort sur un petit logement où il est bloqué, cette étape étant calibrée pour durer le temps T.
- Un ascenseur le remonte en un temps T à la case départ où il sera lancé à la vitesse Vo.
Sur ce rythme à 8.T , il continue perpétuellement :
Calculer h , b , c , d ,l
Solution du parcours d'Alexandre
modifier- h /sin = 1/2. g .sin .T²
- V1 = Vo +sqrt(2gh) ; donc b = V1.T
- au bout de la piste c , sa vitesse sera V2 = V1- sqrt(2g.h/2); donc
c = [(V1+V2)/2].T
- d = V2.T
- chute parabolique de vitesse horizontale V2 pendant le temps T :l =V2.T
- rebond ,remontée , et rechute dans l'entonnoir pendant le temps T.
- ascenseur durée T
- soit 8.T
Ludique , non ? Alors , on continue?
Exercice choc sur plans inclinés
modifierUne descente inclinée d'angle 30°, raccordée à une montée d'angle beta dont le sinus vaut 1/4. Même hauteur h . A gauche un skate G de masse 2m , à droite un skate D de masse 3m , lâchés de sorte que le choc ait lieu à droite à l'altitude h/2. Si le choc a un coefficient de restitution e= 1/2 , trouver l'altitude où remonte chaque skate.
Solution choc sur plans inclinés
modifierÉvidemment l'exercice est largement simplifié par les mots ["de sorte que"]! Alors G a une vitesse sqrt(gh)=Vo et D la vitesse opposée. La vitesse relative est donc 2Vo avant le choc et devient Vo après le choc. La conservation de l'impulsion donne alors, après le choc , Vg = -4/5.Vo et Vd = 1/5 .Vo (on peut vérifier, la solution est unique !). Donc G remonte à gauche jusqu'à l'altitude h/2 +8/25 h = h(41/50); et D remonte à h/2+ 1/50 .h = 26/50 .h : l'effet sur le skate de Gauche est donc très spectaculaire. Évidemment, il y a eu perte d'énergie.
Exercice:horloge de Torricelli
modifierIl s'agit tout simplement d'une cuvette symétrique formée de deux plans inclinés d'angle 30°, de hauteur h , de longueur 2h : un skate y glisse perpétuellement avec la période T = 4. sqrt(2.2h/(g/2)) = sqrt(h/g).8sqrt(2).Le vérifier. En fait, il faut maintenir la remontée à la hauteur h par une légère manœuvre du V , que l'on incline à droite dans la descente à droite et à gauche dans la descente à gauche, très légèrement. L'horloge est donc légèrement fausse, mais erreur de justesse n'est point grave : il suffit qu'elle soit régulière : pas d'irrégularité sur sa période T'(légèrement voisine de T), c'est tout ce qu'on demande à une horloge!
Horloge de Galilée
modifierGalilée dès 1602 énonça une célèbre loi, dont on dit qu'il l'établit en regardant les oscillations des luminaires dans les églises. Effectivement, à la Sainte-Chapelle de Paris, par grand vent, on peut voir de telles oscillations; et on peut chronométrer leurs oscillations : elles ont toutes à peu près la même période , MEME si leur amplitude (de qq centimètres !) est différente. Il s'agit de la très célèbre loi : le long d'une cuvette circulaire de rayon l , les petites oscillations ont pour période:
Évidemment , Galilée ne trouva pas cette formule (les unités n'existaient pas, non plus que l'expression accélération de la pesanteur = g =~9.81 m/s²). C'est Huygens qui trouva le facteur 2Pi ; et enfin Galilée croyait que la formule était vraie pour toute amplitude "raisonnable", ce qui est "presque vrai" , donc FAUX.
Un pas en direction de cette formule fût fait par Torricelli : il imagina que la cuvette était une succession infinie de plans inclinés. Nous reverrons ce problème un peu plus tard (Leçon : diagramme des espaces). Néanmoins par ce type d'argument en choisissant convenablement les plans inclinés , on trouve des résultats approchés tels que Pi =~ 2+sqrt(2), ce qui n'est pas si mal, pour une théorie aussi simpliste.
Exercice : une horloge de Huygens (1609-1695) : la courbe tautochrone
modifierHuygens avait parfaitement assimilé, enfant, les leçons de Torricelli. Il imagina une cuvette symétrique où la vitesse v(s) à la distance curviligne s du fond [donc v(s)= sqrt(v(0)² -2gh(s))] soit telle que v²(s) + w² s² = cste : une telle horloge est telle que s varie sinusoïdalement : s = a cos wt est solution : le vérifier! Il réalisa une telle horloge dont la période était exactement T =2Pi/w . malheureusement, elle aussi s'amortissait, et l'on revînt à l'horloge à balancier munie de son échappement à ancre (inventée elle aussi par Huygens, et qui est le principe des franc-comtoises).
Exercice : la brachistochrone de Johan Bernoulli
modifierJohan Bernoulli a remarqué que la même courbe ( la cycloïde retournée en cuvette ) était la courbe brachistochrone , à savoir : soient deux points Départ-D et Arrivée-A , situés à des cotes différentes et tels que V(D)² + 2g y(D) = V(M)² + 2g. y = cste . Montrer que la courbe qui donne le minimum de temps entre les deux points ( càd le trajet devant être suivi par un skieur pour gagner, départ lancé, est celui de LA cycloïde passant par D et A .
Ce problème est très beau, dans le cas suivant : les points D et A sont à la même cote et distants de DA = d = 2b . De plus, la vitesse en D est "négligeable ( V(D) << sqrt( g.b) ). Alors , la trajectoire est assez majestueuse, car le skieur devra descendre jusqu'à la cote - d/ PI , càd si d = 400 m , une chute de 4*31.8 m ~ 120 m assez spectaculaire , et que l'on voit dans les grands spectacles de ski ; mais la vitesse théorique de sqrt(2g. d/PI) = ~ 200 km/h est rarement atteinte à cause de la résistance de l'air, (il faut aussi réduire par le facteur sqrt(sin(alpha)) pour un pendage alpha, ce qui ramène pour 30° à "seulement" 140 km/h ! ). Ce faisant, le skieur le plus rapide exécute un chemin "optimal" , càd suffisamment "profond" , mais pas au point d'allonger trop le trajet ; le skieur parcourt le trajet 8/2PI . d = 4/PI d = 4 hauteurs de chute. Ce résultat fût obtenu, pour la première fois, par WREN ( 16xx - 16yy), architecte connu de la reconstruction de Londres après le Grand-Incendie, et par ailleurs fin mathématicien.En effet , l'analyse de la rectification des courbes était à son balbutiement à cette époque. Pascal ( sous le pseudo de Dettonville ) fût aussi un très grand promoteur de la "roulette" ( cf la WP ).
Juste pour rappel, sans reprendre dans le détail toute cette analyse pourtant admirable ( mais peut-être un jour... ), voici qq éléments sur la cycloïde : (on pourra trouver dans des livres sur les "courbes remarquables" , énormément de détails subtils, qui faisaient les délices des taupins d'autrefois ! ) :
il s'agit d'un cercle qui roule sans glisser ; soit u l'angle dont il a tourné ( il a donc avancé de R.u ), alors le point le plus bas est venu en {x = R[u-sin u] et y = R[1 - cos u ]}. D'où la vitesse MH . w, puis l'accélération MC w² + w.(dw/dt)^ CM ( résultats somptueux obtenu par Huygens en 1673 !). Le rayon de courbure est 2 MI , donc l'accélération normale est w². MH² / 2MI = w²R. sin(u/2); on en déduit facilement l'accélération tangentielle. Comme s² = 4.MI², on obtient s² = 4 rho² ( équation dite caractéristique(1)); et aussi s² = ky(2) ; on obtient aussi v² + 2w²R.y = cste ( équation caractéristique(3)) et v² + w²s²/4 = cste(4) ; et enfin v/ cos(alpha) = cste ( équation (5)caractéristique aussi ).Ces résultats se déduisent tous des 2 équations de départ, et seront bien utiles pour comprendre la "physique" .
La propriété tautochrone se déduit aisément de (4) et la propriété brachistochrone de (5). Remarque : on voit souvent ces deux propriétés être démontrées à grand renfort d'équations différentielles. CE N'EST PAS DU TOUT dans l'esprit de l'époque, où les propriétés sont considérées comme "d'évidence" conduisant à une solution qui existe-et-est-unique. Il "suffit" donc alors d'exhiber LA solution , ce qui vient d'être fait précédemment.
Rappelons que tous ces résultats étaient obtenus au XVII ème , uniquement par la géométrie ! Aussi quand JohanB. posa son challenge à la communauté scientifique, LEIBNIZ, JacquesB, l'HOPITAL et bien sûr NEWTON répondirent.( Ne pas s'étonner de l'absence de Huygens, il décède en 1695 ! Gageons qu'il aurait trouvé aussi ! )
C'est avec ce problème, puis le conflit qui va opposer Johan et Jacques, que va se construire en Allemagne le calcul-des-variations, bientôt dominé par EULER, et enfin par LAGRANGE. Avec ces deux génies,l'histoire du calculus est consommée. Il restera certes des progrès à accomplir, mais il viendra plus de la théorie de la variable complexe ( Cauchy, 1821 ); les physiciens-mécaniciens ont désormais , avec la "mechanique-analytique" de Lagrange, puis le "système du monde" de Laplace, les outils essentiels pour travailler 2 siècles. Le renouveau apparaît vers 1980, avec de nouvelles solutions, dites périodiques dans des espaces de phases plus complexes ( la notion d'espace des phases fût introduite par Hamilton et Jacobi vers 1830).
Qui pourrait croire que d'un simple problème de chute ralentie ..., cherrerait une telle profusion de résultats !