« Le noyau atomique/La cohésion du noyau » : différence entre les versions

Contenu supprimé Contenu ajouté
mAucun résumé des modifications
Ligne 3 :
: <math>M = Z \times m_z + N \times m_n + \Delta M</math>
 
La différence de masse provient bien de quelque part et il est possible d'en expliquer la provenance. Vu que c'est la différence entre la masse des nucléons individuels et celle de ces mêmes nucléons agencés en noyau, on devine qu'il s'agit d'une masse qui se perd lors de la formation du noyau. En utilisant la formule d'équivalence masse-énergie d'Einstein <math>E=Mc^2</math>, on déduit que cette différence de masse correspond à une énergie <math>E = \Delta M c^2</math>, appelée '''énergie de liaison'''. L'énergie de liaison n'est autre que l'énergie qui se dégage lors de la formation du noyau. La masse manquante s'est donc convertie en énergie de liaison lors de la formation du noyau. On peut aussi voir l'énergie de liaison comme l'énergie qu'il faut fournir pour séparer le noyau en nucléons individuels. On devine donc que cette énergie est ce qui tient les nucléons ensemble, dans le noyau, et les empêche de quitter le noyau. Ce qui nous amène au sujet de ce chapitre : pourquoi certains noyaux sont stables, alors que d'autres se désintègrent en noyaux plus petits par radioactivité ? On sait que la raison est liée à l'énergie de liaison : plus elle est forte, plus le noyau est censé être stable. La masse du noyau est donc :
 
: <math>M = Z \times m_z + N \times m_n - \frac{E_l}{c^{2}}</math>, avec <math>E_l</math> l'énergie de liaison.
 
L'énergie de liaison n'est autre que l'énergie qui se dégage lors de la formation du noyau. La masse manquante s'est donc convertie en énergie de liaison lors de la formation du noyau. On peut aussi voir l'énergie de liaison comme l'énergie qu'il faut fournir pour séparer le noyau en nucléons individuels. On devine donc que cette énergie est ce qui tient les nucléons ensemble, dans le noyau, et les empêche de quitter le noyau. Ce qui nous amène au sujet de ce chapitre : pourquoi certains noyaux sont stables, alors que d'autres se désintègrent en noyaux plus petits par radioactivité ? On sait que la raison est liée à l'énergie de liaison : plus elle est forte, plus le noyau est censé être stable.
 
On pourrait croire que plus l’énergie de liaison est élevée, plus le noyau est stable. Mais il faut aussi prendre en compte le nombre de nucléons du noyau, car l'énergie de liaison est répartie sur tous les nucléons du noyau. Selon que l'énergie de liaison est répartie sur beaucoup ou peu de nucléons, la stabilité du noyau ne sera pas la même. C'est donc l'énergie de liaison par nucléon qui est importante pour la stabilité du noyau : plus elle est grande, plus chaque nucléon est lié aux autres. Le graphique ci-dessous donne l'énergie de liaison par nucléon pour la majorité des noyaux connus. On voit qu'elle dépend du nombre de nucléons, avec un maximum localisé au niveau du Fer 56. Cet isotope du Fer est donc le noyau e plus stable qui existe, les autres l'étant un peu moins. Tout noyau qui n'est pas du Fer tend donc à fusionner avec d'autres noyaux ou à se désintégrer jusqu'à se transmuter en Fer 56.