« Mécanique, enseignée via l'Histoire des Sciences/Plan de phase » : différence entre les versions

Contenu supprimé Contenu ajouté
Ligne 317 :
trouver la valeur de g
 
====Solution montée puis chute====
Si kv² est nul , la réponse est aisée : si on se place au point le plus haut , d1= 1/2 g (T1/2)², idem d2 : donc g = 8d/(T1²-T2²).
Si on ne néglige plus kv² , il faut être prudent et écrire -kv².sgn(v) : l'équation différentielle à la montée n'est PLUS la même! C'est piègeux .
 
En effet , dv/dt = -g (1 +k v²) donnera en coordonnées réduites : dV/dt' = -(1+V²) , V fera donc intervenir tan (t')et non plus tanh (t'). Et la formule décrite devient grossièrement fausse , car la montée et la descente ne mesurent pas des g-apparents que l'on pourrait déduire facilement.
 
Une question délicate est: la balle met-elle plus ou moins de temps que Vo/g à descendre? On reste pris entre deux arguments contraires : certes elle va moins vite, mais elle descend de moins que zo = Vo²/2g ! Je ne vois pas comment faire autrement que par le calcul.
Enfin , signalons ce résultat assez surprenant dans le cas de chute d'une sphère de masse M dans un superfluide ( donc de viscosité nulle): on peut oublier le superfluide et rajouter à M , la masse du fluide soit -a.(4/3)R. Pi.R² .dv/dt : ce joli résultat est dû à Greene vers 1838 : c'est un des premiers résultats de Renormalisation avant la lettre.