Planétologie/Les magnétosphères planétaires

Peut-être le savez-vous déjà, mais la Terre a un champ magnétique. Ce champ magnétique est, en première approximation, un champ dipolaire (à deux pôles). Cela veut dire qu'il a un pôle nord magnétique et un pôle sud magnétique. Pour la Terre, les pôles magnétiques sont proches des pôles géographiques, bien que les deux soient quelques peu décalés. C'est pour cela que les boussoles pointent vers le pôle nord et que les navigateurs les ont utilisés durant longtemps. En passant, il faut savoir que le pôle nord géographique est proche non pas du pôle nord magnétique, mais du pôle sud magnétique ! La Terre n'est pas la seule planète dans ce cas, d'autres planètes ayant un champ magnétique existent aussi. Ce chapitre va aborder les champs magnétiques planétaires et les phénomènes associés.

Champ magnétique terrestre

Les champs magnétiques planétaires

modifier

Outre la Terre et Mercure, les planètes géantes ont aussi un champ magnétique permanent. Venus et Mars ont eu dans le passé un champ magnétique, mais celui-ci a disparu aujourd'hui. Le Soleil a aussi un tel champ magnétique, qui englobe tout le système solaire. Ces champs magnétiques sont souvent représentés sous la forme d'un champ dipolaire, avec un pôle nord et un pôle sud, typique de celui d'un aimant. Mais en réalité, les champs magnétiques planétaires sont plus complexes et ont une géométrie nettement plus difficile à saisir. La représentation sous la forme d'un champ dipolaire n'est qu'une approximation, assez bonne pour la plupart des situations.

La déclinaison magnétique

modifier
 
Déclinaison magnétique terrestre.

Il faut signaler que l'axe du champ magnétique n'est pas toujours aligné avec l'axe de rotation. Dit autrement, le pôle sud magnétique est un petit peu décalé par rapport au pôle nord géographique. Il n'est même pas dit que le centre de "l'aimant planétaire" soit situé au centre de la planète ! Tel est le cas sur Terre : le pôle sud magnétique est situé approximativement à 500 kilomètres du pôle nord géographique. De plus, le centre de l'aimant planétaire est situé à plusieurs centaines de kilomètres du centre de la Terre. L'axe du champ magnétique terrestre fait un angle de 11,5° avec l'axe de rotation, cet angle étant appelé la déclinaison magnétique. Uranus est aussi dans ce cas, mais sa situation est encore plus extrême. L'axe magnétique fait un angle plus important avec l'axe de rotation que sur Terre, sans compter le décalage entre les centres. L'angle entre axes magnétique et géographique est cette fois-ci de 57°. Quant au centre magnétique, celui-ci est à 1/3 de rayon planétaire du centre géographique.

 
Champ magnétique d'Uranus.
 
Déplacement du pôle sud magnétique terrestre.

Sur Terre, la déclinaison magnétique n'est pas fixe : les pôles magnétiques se déplacent lentement au cours des temps géologiques. Le champ magnétique terrestre s'est même inversé plusieurs fois, le pôle nord devenant le pôle sud et réciproquement. Lors de ces inversions, le champ magnétique semble disparaitre durant quelques milliers d'années, du moins sa composante dipolaire. Les origines de ces variations du champ magnétique terrestre ne sont pas connues à l'heure actuelle.

D'autres planètes ont vu leur champ magnétique totalement disparaitre. La preuve en est l'aimantation des roches crustales de ces planètes. Les roches magmatiques contiennent quelques minéraux magnétiques, qui s'orientent dans la direction du champ planétaire. En conséquence, ces roches gardent des traces d'aimantation, qui permettent de reconstruire le champ magnétique existant lors de leur formation. L'analyse des roches de Mars montrent que les roches anciennes ont gardé une aimantation, alors que les roches plus jeunes n’ont jamais été aimantées. Cela montre qu'un champ magnétique a existé durant un certains temps, avant de stopper définitivement. Là encore les processus menant à la disparation de ce champ magnétique sont inconnus, bien que quelques pistes soient envisagées.

L'origine des champs magnétiques planétaires

modifier

L'existence des champs magnétiques planétaires pose la question de leur origine. Et suivant la planète, les mécanismes qui sont à l'origine des champs magnétiques planétaires ne sont pas les mêmes. Dans le détail, on distingue les champs magnétiques entretenus et rémanents.

Le premier mécanisme possible se base sur l'aimantation spontanée des roches, mais il ne peut expliquer que l'aimantation rémanente des planètes qui ont eu un champ magnétique dans le passé, comme nous le verrons dans quelques chapitres. Dans les faits, les matériaux qui composent les planètes n'ont pas d'aimantation spontanée. Par contre, ils peuvent en acquérir si on les soumet à un champ magnétique. Or, , certaines planètes ont eu un champ magnétique qui a disparu au cours des temps géologiques. Mais les roches de la planète ont gardé une aimantation rémanente. Dans le détail, les minéraux qui se sont formés quand le champ existait se sont orientés vers l'axe du champ magnétique, sans compter qu'ils se sont aussi aimantés. Une fois la roche formée, les minéraux ont conservé leur direction et leur aimantation, même après que le champ magnétique planétaire ait disparu. Le résultat est qu'il reste un reliquat de champ magnétique dans les roches, qui peut se sentir dans l'espace. Un tel champ magnétique est appelé un champ magnétique planétaire rémanent, à opposé au champ magnétique planétaire entretenu que nous allons voir juste après.

Les champs magnétiques entretenus sont créés par des courants électriques à l'intérieur d'une planète ou d'un satellite. Ils apparaissent sous certaines conditions. Il faut notamment que l'intérieur de la planète soit partiellement ou totalement liquide. De plus, le liquide en question doit être conducteur de l’électricité, ce qui signifie que des courants électriques peuvent s'y former et s'y déplacer sans trop de problèmes. Le champ magnétique se forme quand des courants électriques se déplacent dans cette couche liquide conductrice. Rappelons qu'un courant électrique génère un champ magnétique tout autour de lui. Pour qu'une planète ait un champ magnétique, il suffit donc qu'il existe des courants électriques stables à l'intérieur de la planète. Chaque courant électrique va générer un champ magnétique et la somme totale pour tous les courants donnera le champ magnétique planétaire. Au niveau macroscopique, le mécanisme précédent est l'un des deux phénomènes connus capable de former un champ magnétique de grande intensité. Et c'est le seul responsable dans le cas des champs magnétiques planétaires.

Si on souhaite classer les mécanismes à l'origine des courants électriques intra-planétaires, on se retrouve avec deux types principaux. Dans le premier type, le champ magnétique est directement généré par la planète. Dans le second type, le champ magnétique est généré par l'interaction entre l'intérieur de la planète et un champ magnétique extérieur. Le champ magnétique d'une planète est alors induit en réponse au champ magnétique d'une autre planète. Le phénomène physique qui lui donne naissance n'est autre que le phénomène d'induction magnétique, d'où son nom de champ magnétique induit.

Les champs d'origine interne

modifier
 
Théorie de la dynamo planétaire.

Certaines planètes ont un champ magnétique qui n'est pas induit mais directement généré par la planète. De nos jours, la seule théorie qui explique ces champs magnétiques est la théorie de la dynamo planétaire. Cette théorie suppose que les planètes doivent :

  • avoir un mouvement de rotation sur elles-mêmes ;
  • avoir une couche liquide conductrice, généralement métallique ;
  • et posséder une différence de température entre sommet et base de la couche liquide.

Les deux dernières conditions garantissent l'existence de courants de convections dans la couche liquide. La rotation de la planète entraine une force de Coriolis, qui dévie les courants de convection : ceux-ci s'enroulent et forment des tourbillons. Ces tourbillons forment des boucles de courant en forme de rouleaux. Ces mouvements de liquide conducteurs sont naturellement des courants électriques. Les tourbillons forment donc des boucles de courant, qui engendrent un champ magnétique. La première hypothèse est une certitude sur toutes les planètes du système solaire, qui tournent sur elles-mêmes. Il faut cependant que la vitesse de rotation soit suffisante, mais cela ne pose pas de problème pour interpréter les résultats des planètes connues. La seconde hypothèse demande que le centre de la planète soit composé de matériel conducteur liquide. Pour les planètes telluriques, divers arguments et observations disent que leur cœur est métallique, essentiellement composé de Fer, de Nickel et de Soufre, solide au centre mais surmonté d'une couche liquide. Les planètes géantes possèdent une couche d'hydrogène métallique, particulièrement bon conducteur. La troisième hypothèse, nécessaire pour observer des courants de convection, est cependant plus difficile à vérifier.

Les champs induits

modifier

Si on met de côté les planètes avec un champ auto-généré, d'autres planètes ont un champ qui est induit par le champ magnétique solaire. Ces planètes possèdent une couche liquide conductrice, qui peut donc être le siège de courants. Ces courants sont générés par le mouvement de la planète dans le champ magnétique solaire (ou celui d'une autre planète). Si la planète suit une trajectoire elliptique, elle verra le champ magnétique varier progressivement. Cette variation de champ magnétique entrainera l’apparition de courants dans sa couche conductrice, courant qui génèreront eux-mêmes un champ magnétique qui s'opposera au champ magnétique initial. Ce mécanisme est à l’œuvre sur certains satellites de Jupiter. Le champ magnétique de Jupiter est en effet à l'origine d'un champ induit sur certaines de ses satellites : Europe et Ganymède. On verra dans quelques chapitres que la couche conductrice de ces satellites est un gigantesque océan, coincé entre deux couches de glaces. Rappelons que l'eau non-pure est légèrement conductrice.

Le vent solaire : un flux de particules émis par le Soleil

modifier

Les champs magnétiques planétaires ont une zone d'influence assez étendue dans l'espace, qui porte le nom de magnétosphère. On pourrait croire que celles-ci sont sphériques, mais il n'en est rien. La raison à cela est l'interaction de ce qu'on appelle le vent solaire avec le champ magnétique planétaire. Le vent solaire est un flux permanent de particules, émis en permanence par le Soleil. Le nom "vent solaire" donne une bonne intuition ce que phénomène. Tout se passe comme si le Soleil émettait un vent de particules tout autour de lui. Les particules du vent solaire sont variées : électrons, ions hydrogènes, neutrons, neutrinos, ondes radio, etc. Mais les particules dominantes sont les électrons et les protons, avec quelques ions assez rares. Le vent solaire est donc surtout composé de particules chargées, ce qui fait qu'il va naturellement interagir avec les magnétosphères, que ce soit pour les déformer ou causer d'autres phénomènes.

La densité du vent solaire décroit assez rapidement, avec le carré de la distance, ce qui fait que les planètes proches reçoivent un fort vent solaire alors que les planètes lointaines sont relativement épargnées. Le vent solaire agit comme une sorte de souffle, qui repousse la matière interstellaire. Il oppose donc une force de pression dirigée vers l'extérieur du système solaire. Et cette force de pression diminue avec la distance, toute comme la densité du vent solaire lui-même. La pression du vent solaire repousse donc la matière interstellaire, jusqu'à un point d'équilibre, quand la pression du vent solaire devient égale à la pression du milieu extérieur. La frontière d'équilibre entre vent solaire et pression extérieure est appelée l'héliopause.

Précisons que le vent solaire est émis pendant que le Soleil tourne sur lui-même, ce qui a des conséquences. Prenons le vent solaire émis à un endroit du Soleil. Après son émission, le Soleil va tourner sur lui-même, ce qui fait que le nouveau vent solaire est alors émis avec un angle. Si on réfléchit bien, on voit que le vent solaire émis en un point de la surface solaire forme une spirale, appelée spirale de Parker. Techniquement, le vent solaire n'est pas émis uniformément sur toute la surface du Soleil : il y a des zones où le vent est plus fort qu'ailleurs, même si la position de ces zones varie rapidement. Et cela se retrouve dans l'espace autour du Soleil : on trouve des zones où le champ magnétique est plus intense et d'autres où il est plus faible. Cela déforme les spirales de Parker émises en des points proches : les spirales se resserrent là où le champ est fort, elles s'éloignent là où le champ est faible. On retrouve donc des déformations dans le champ magnétique interplanétaire , qui trahissent des inhomogénéités du vent solaire initial. De tels phénomènes sont impliqués dans la naissance des aurores polaires, par une série de mécanismes difficiles à expliquer.

 
Spirale du modèle de Parker, cas idéal où le vent solaire est uniforme sur toute la surface solaire.

L'interaction du vent solaire avec les planètes/satellites/autres corps dépend du corps en question. Rappelons que la quasi-totalité du vent solaire est composé de particules chargées, qui sont déviées par un champ magnétique. De plus, le vent solaire transporte un champ magnétique qui interagit avec les milieux conducteurs. On peut se retrouver avec trois cas : soit le corps n'est ni conducteur ni aimanté, soit il est simplement conducteur, soit le corps a un champ magnétique qui interagit avec le vent solaire.

  • Le cas des petits corps non-conducteurs sans champ magnétique est assez simple. Le vent solaire interagit avec la surface tellurique du corps considéré et intervient dans l’érosion spatiale, vue il y a quelques chapitres. Le flux de particule chargé attaque a surface et entraine des modifications physiques et chimiques assez importantes.
  • Si le corps considéré est conducteur, comme c'est le cas pour les comètes, des interactions peuvent se produire entre le petit corps et le vent solaire. L'effet est surtout visible avec les comètes, qui sont composées surtout d'eau glacée (un excellent conducteur). L'interaction entre la comète et le vent solaire donne naissance à une queue cométaire, comme on le verra dans le chapitre sur les comètes et astéroïdes.
  • Le cas d'un corps avec un champ magnétique est étudié dans la section suivante.

Les magnétosphères planétaires : l'interaction entre vent solaire et champs magnétiques planétaires

modifier

Les planètes sont entourées par une cavité magnétique dans le vent solaire, qui est appelé la magnétosphère de la planète. Dans une magnétosphère planétaire, le vent solaire est ralenti par un champ magnétique qui contrecarre le vent solaire. Intuitivement, on se dit que la présence d'un champ magnétique est nécessaire pour que se forme une magnétosphère. Les champs magnétiques planétaires repoussent et dévient le vent solaire, ce qui crée une magnétosphère. Mais certaines planètes sans champ magnétique ont quand même une magnétosphère, Vénus en étant un bon exemple. La raison à cela est qu'une planète est un obstacle au vent solaire et au champ magnétique qu'il transporte. Si l'obstacle est trop petit, il ne se passe rien de bien probant. Mais avec une planète, cela entraine l'apparition d'un champ magnétique induit, indépendant du champ magnétique planétaire. La présence d'un champ magnétique planétaire accentue le phénomène : le champ magnétique planétaire s'ajoute au champ magnétique induit.

La taille de la magnétosphère dépend donc de l'intensité du champ magnétique, ainsi que du vent solaire. Les planètes avec un fort champ magnétique ont évidemment une magnétosphère plus grande, plus imposante. Mais l'intensité du vent solaire a aussi un rôle à jouer, en lien avec le champ magnétique induit. Un vent solaire plus fort écrase la magnétosphère et la rend plus petite. Sachant que l'intensité du vent solaire décroit avec le carré de la distance, on devine que les planètes proches ont de plus petites magnétosphères que les planètes éloignées.

Le champ magnétique planétaire protège la planète d'un bombardement de rayons cosmiques et de particules chargées. Cela limite l'érosion spatiale des surfaces planétaires sans atmosphères. Sur Terre, cela a permis l'apparition de la vie. Les organismes vivants auraient en effet du mal à survivre à l'irradiation du vent solaire et leurs acides nucléiques (ADN ou ARN) seraient sans cesse brisés par les particules énergétiques arrivant du Soleil. Le champ magnétique terrestre, en déviant le vent solaire, a permis aux molécules de base de la vie de se former. On peut faire l'analogie entre l'effet protecteur du champ magnétique et celui de la couche d'ozone. La différence étant que la couche d'ozone protège des ultraviolets (donc de la lumière solaire) alors que le champ magnétique protège du vent solaire.

La forme des magnétosphères

modifier

La plupart des magnétosphères auraient une forme approximativement sphérique en l'absence du vent solaire, mais le vent solaire déforme ces magnétosphères idéales. Le vent solaire va en quelque sorte s'écraser sur la magnétosphère et la souffler, la repousser. Elle prend alors une forme ovoïde, similaire à la trainée d'une comète, illustrée ci-dessous. Dans les grandes lignes, l'interaction du vent solaire avec la magnétosphère est assez simple : le vent solaire est dévié par le champ magnétique et contourne la planète. Dans les grandes lignes, on peut subdiviser la magnétosphère en plusieurs sections, selon l'intensité du vent solaire dans chaque subdivision. Deux frontières principales découpent la magnétosphère :

  • une onde de choc, où le vent solaire commence à ralentir et où les particules sont déviées de leur trajectoire ;
  • une magnétopause, où le vent solaire est complètement stoppé et est renvoyé vers l'espace.
 
Magnétosphère planétaire.

L'onde de choc se forme sur la zone de contact entre magnétosphère et vent solaire. Elle nait lors du ralentissement du vent solaire, qui est freiné par le champ magnétique planétaire. Rappelons que le vent solaire est un plasma, un gaz de particules ionisées, très peu dense, dans lequel le son se déplace à une vitesse bien précise. Or, les planètes se déplacent à une vitesse largement supérieure à la vitesse du son dans le plasma, et leur magnétosphère fait de même. Tout se passe comme si la magnétosphère était un obstacle, un objet "solide" qui se déplacerait dans un milieu fluide (le plasma) plus vite que le son. La conséquence est l'apparition d'une onde de choc, physiquement analogue à la vague formée à l'avant d'un bateau qui avance sur une mer calme, ou encore à l'onde de choc d'un avion qui passe le mur du son.

La zone située entre l'onde de choc et la magnétopause est appelée la magnétogaine. Dans cette zone, les particules ralentissent progressivement en s'approchant de la Terre. Les particules du vent solaire ont, dans cette magnétogaine, un mouvement turbulent, même si elles suivent approximativement les lignes de champ. Du côté droit, "nuit", les lignes de champ sont déformées par le vent solaire : certaines lignes de champ ne se referment pas et forment une queue, de même forme que la queue d'une comète.

Plus près de la planète, les particules du vent solaire sont repoussées par le champ magnétique terrestre et ne peuvent s'approcher plus près. Pour être plus précis, les particules déviées et ralenties dans la magnétogaine ne peuvent pas pénétrer au-delà d'une limite assez imprécise. Cette frontière, la magnétopause, a une position fluctuante, selon la force du vent solaire son intensité, la position dans le cycle solaire, etc. Dans cette zone, les lignes de champ se referment malgré leur déformation. Les particules piégées dans ces lignes de champ circulent alors autour de la planète et gardent leur état de plasma chaud. D'où le nom de plasmagaine donné à cette zone.

 
Magnétosphère planétaire - version simplifiée

Encore plus près de la planète, les lignes de champ ne sont pas déformées par le vent solaire. En conséquence, elles se referment et forment des anneaux circulaires ou ellipsoïdaux : les ceintures de Van Allen. Dans ces ceintures, les particules tournent autour de la planète à grande vitesse.

 
Ceinture de Van Allen

Les aurores polaires

modifier

Il arrive, dans certaines circonstances assez compliquées à expliquer, que les particules du vent solaire interagissent avec l'atmosphère et l'ionisent, ce qui crée pas mal de lumière. Si le vent solaire est suffisamment intense, cette lumière est visible au niveau du sol sous la forme d'aurores polaires. L'origine des aurores tient dans des phénomènes physiques assez compliqués, souvent mal vulgarisés, qui impliquent la magnétosphère et sa réponse au vent solaire. Contrairement à ce qui est dit dans certains ouvrages de vulgarisation, ni les ceintures de Van-Hallen, ni l'intrusion du vent solaire dans les cornets polaires, n'ont quoique ce soit à voir avec ce phénomène.

Sur Terre, les aurores sont souvent situées aux pôles, d'où leur nom, mais en peut rarement en observer à des latitudes plus basses. Il arrive qu'on en voie aux états-unis et il est même déjà arrivé qu'on en voie depuis la France.

 
Aurore polaire sur Terre.
 
Aurores polaires sur Saturne.
 
Aurores polaires sur le satellite Ganymède. On voit que celles-ci sont à des latitudes assez basses.

Ces aurores ne s'observent pas que sur Terre, mais aussi sur toutes les corps qui ont un champ magnétique. On en observe sur certaines planètes, comme sur Jupiter ou Saturne, mais aussi sur certains satellites comme Ganymède ou Io. Pour que les aurores naissent, il faut trois conditions : la présence d'un vent solaire, un champ magnétique planétaire, et la présence d'une ionosphère (une couche de l'atmosphère complètement ionisée).

  • Le vent solaire est présent dans tout le système solaire, bien que sa puissance diminue avec la distance au Soleil. Mais il reste suffisamment puissant pour allumer des aurores polaires sur les planètes gazeuses, malgré leur éloignement.
  • La présence d'une ionosphère est acquise pour la plupart des planètes du système solaire et certains satellites. Pour les planètes gazeuses, elles disposent d’une atmosphère assez épaisse qui est soumise aux rayonnements ultraviolets provenant du Soleil. Les UV ionisent le haut de l'atmosphère, ce qui donne naissance à une ionosphère assez développée. Même chose pour les planètes telluriques, qui ont une ionosphère, à l'exception de Mercure.
  • Pour la présence d'un champ magnétique, cette condition est remplie sur la Terre, Mercure, Jupiter, Saturne, Uranus et Neptune. Les autres planètes n'ont pas de champ magnétique et ne peuvent donc pas avoir d'aurores. Le cas des satellites est un peu à part, car la présence d'un champ magnétique propre n'est pas forcément nécessaire pour y observer des aurores. Certains ont un champ magnétique propre et les aurores peuvent survenir sur ces satellites, comme sur les planètes. D'autres satellites n'ont pas de champ magnétique propre, mais sont baignés dans la magnétosphère de la planète autour de laquelle ils gravitent. Et ceux-ci peuvent subir divers phénomènes magnétiques qui sont à l'origine d'aurores polaires, bien qu'ils n'aient pas de champ magnétique dipolaires à eux.

Pour résumer, on doit s'attendre à voir des aurores sur la Terre et les planètes gazeuses, les seules à avoir à la fois un champ magnétique et une ionosphère. Pour les satellites, les satellites joviens et de Saturne sont parfois auréolés d'aurores polaires.

Vent solaire Présence d'un champ magnétique Présence d'une ionosphère Aurores polaires
Mercure Suffisamment puissant pour donner naissance à des aurores. Absence de champ magnétique. Ionosphère absente/inexistante
Venus Ionosphère présente.
Terre Champ magnétique présent. Présence d'aurores
Mars Absence de champ magnétique.
Jupiter Champ magnétique présent. Présence d'aurores
Saturne
Uranus
Neptune

Les processus à l'origine des aurores ne sont pas les mêmes sur chaque planète du système solaire. Un bon moyen de s'en rendre compte et de comparer les aurores de la Terre et celles des autres planètes.

Sur Jupiter, les aurores sont localisées près des pôles, comme sur Terre, mais la localisation exacte des aurores est complètement différente. Il existe en tout 15 régions distinctes où se forment les aurores et celles-ci ont des formes totalement inédites. Pour simplifier, on peut regrouper le tout en trois régions. La première est un anneau auroral qui encercle les pôles, allumé en permanence. La seconde est localisée à l'intérieur de l'anneau auroral, ce qui lui vaut le nom de région polaire, et les aurores s'y allument de manière variable. Enfin, à l'extérieur de l'anneau auroral, on trouve des aurores permanentes dont certaines sont liées aux satellites joviens (jovien = de Jupiter). Les aurores dans l'anneau auroral ne seraient pas liées directement au vent solaire, mais à la rotation de la planète. Elles sont présentes aussi bien de jour comme de nuit, là où les aurores terrestres sont localisées dans le côté nuit. Par contre, les aurores de la région polaire seraient analogues aux aurores terrestres. D'autres aurores sont liées à la présence des satellites de Jupiter. Les trois aurores brillantes en forme de queue de comète, localisées en dehors de l'anneau, sont liées aux satellites Io, Europe et Ganymède, qui émettent des particules chargées dans leur environnement, particules qui tombent par gravité sur Jupiter. Le point de contact entre ces queues de particules émises par les trois satellites et Jupiter donne une aurore lumineuse.

 
Aurores aux pôles de Jupiter.

Les éruptions solaires et les magnétosphères planétaires

modifier

Il arrive que des éruptions solaires surviennent à la surface du Soleil. Durant ce genre d'évènement, le Soleil émet de grandes quantités de plasma et de gaz dans l'espace, ce qui fait que le vent solaire augmente drastiquement durant quelques jours ou quelques heures. Ces éruptions solaires sont liées à des évènements magnétiques à la surface du Soleil, qui sont assez difficiles à expliquer simplement. Mais le résultat est que l’augmentation soudaine du vent solaire a une influence sur la magnétosphère des planètes, qui vacille temporairement durant de tels évènements. Des aurores polaires apparaissent presque systématiquement lors de tels évènements.

Sur Terre, les éruptions solaires ne sont pas totalement filtrées par la magnétosphère et leur influence se fait sentir jusqu’au sol. Quelques heures après une éruption solaire, la Terre est soumise à un flux de particules très énergétiques. Et quand on dit très énergétiques, cela veut dire qu'elles sont capables d'endommager des équipements électroniques. Les satellites en orbites sont les premiers touchés, mais l'équipement au sol et les systèmes de communication peuvent aussi être endommagés si l’éruption est assez forte. Lors des pires éruptions, du matériel électronique domestique peut être endommagé s'il est en fonctionnement durant l'émission. Les transformateurs électriques peuvent aussi sauter, dans le pire des cas ! L'effet est maximal aux hautes latitudes, près des pôles, là où la protection de la magnétosphère terrestre est plus faible. Mais les pires éruptions solaires ont cependant réussi à toucher le Canada. L'exemple le plus spectaculaire, ainsi que le plus connu, est l'éruption solaire de 1989 qui a entrainé la panne électrique générale du réseau électrique d'Hydro-Québec (TransÉnergie). .