Mathc initiation/a0049
Vérifier quelques propriétés mathématiques de trigonométrie hyperbolique
3tanh(x)+tanh(x)**3 Vérifions si : tanh(3x) = ------------------- 1+3tan(x)**2
Nous avons vu que :
tanh(y) + tanh(x)
tanh(x+y) = ------------------
1 + tanh(y) tanh(x)
posons y = 2x :
tanh(2x) + tanh(x)
tanh(x+2x) = ------------------
1 + tanh(2x) tanh(x)
tanh(2x) + tanh(x) (a)
tanh(3x) = --------------------
1 + tanh(2x) tanh(x) (b)
a) ------------------------------------------
2*tanh(x)
tanh(2x) + tanh(x) = ------------ + tanh(x)
1+tanh(x)**2
2*tanh(x) tanh(x) (1+tanh(x)**2)
tanh(2x) + tanh(x) = ------------ + ----------------------
1+tanh(x)**2 1+tanh(x)**2
2*tanh(x) tanh(x)+tanh(x)**3
tanh(2x) + tanh(x) = ------------ + ------------------
1+tanh(x)**2 1+tanh(x)**2
3*tanh(x) + tanh(x)**3
tanh(2x) + tanh(x) = ----------------------
1+tanh(x)**2
b) ------------------------------------------
2*tanh(x)
1 + tanh(2x) tanh(x) = 1 + ------------ tan(x)
1+tanh(x)**2
1+tanh(x)**2 2*tanh(x)**2
1 + tanh(2x) tanh(x) = ------------ + ------------
1+tanh(x)**2 1+tanh(x)**2
1 + 3 tanh(x)**2
1 + tanh(2x) tanh(x) = ----------------
1+tanh(x)**2
a/b) ------------------------------------------
3*tanh(x) + tanh(x)**3
----------------------
1+tanh(x)**2
tanh(3x) = ------------
1 + 3 tanh(x)**2
----------------
1+tanh(x)**2
donc
3*tanh(x) + tanh(x)**3
tanh(3x) = ------------------
1 + 3 tanh(x)**2