Mathc initiation/Fichiers c : c30cg
Installer et compiler ces fichiers dans votre répertoire de travail.
c2g.c |
---|
/* --------------------------------- */
/* save as c2g.c */
/* --------------------------------- */
#include "x_hfile.h"
#include "fg.h"
/* --------------------------------- */
int main(void)
{
double i;
clrscrn();
printf(" Does lim x->0 %s exist ?\n\n", feq);
printf(" Substituing 0 for x gives 0/0.\n");
stop();
clrscrn();
printf(" f : x-> %s\n\n", feq);
printf(" Approximate f(x) by the right,\n");
printf(" for x near 0.\n\n");
for(i=1; i>0.1; i+=-.1)
printf(" f(%+.1f) = %5.3f || f(%+.2f) = %5.6f || f(%+.3f) = %5.8f\n",
i, f(i),
i*.1, f(i*.1),
i*.01,f(i*.01)
);
stop();
clrscrn();
printf(" f : x-> %s\n\n", feq);
printf(" Approximate f(x) by the left,\n");
printf(" for x near 0.\n\n");
for(i=-1; i<-0.1; i+=.1)
printf(" f(%+.1f) = %5.3f || f(%+.2f) = %5.6f || f(%+.3f) = %5.8f\n",
i, f(i),
i*.1, f(i*.1),
i*.01,f(i*.01)
);
stop();
clrscrn();
printf(" With the table we arrive at the following conjecture.\n\n");
printf(" lim x->0 %s = 1\n\n", feq);
stop();
return 0;
}
/* --------------------------------- */
/* --------------------------------- */
On peut obtenir le même résultat en utilisant la Règle de L'Hôpital. [wikipedia].
(tan(x))'/(x)' = sec**2(x)/1 et lim x->0 sec**2(x) = 1
Remarque :
(tan(A*x))'/(B*x)' = A*sec**2(A*x)/B et lim x->0 A*sec**2(A*x)/B = A*sec**2(A*0)/B = A/B
Exemple de sortie écran :
Does lim x->0 tan(x)/x exist ?
Substituing 0 for x gives 0/0.
Press return to continue.
****************************
f : x-> tan(x)/x
Approximate f(x) by the right,
for x near 0.
f(+1.0) = 1.557 || f(+0.10) = 1.003347 || f(+0.010) = 1.00003333
f(+0.9) = 1.400 || f(+0.09) = 1.002709 || f(+0.009) = 1.00002700
f(+0.8) = 1.287 || f(+0.08) = 1.002139 || f(+0.008) = 1.00002133
f(+0.7) = 1.203 || f(+0.07) = 1.001637 || f(+0.007) = 1.00001633
f(+0.6) = 1.140 || f(+0.06) = 1.001202 || f(+0.006) = 1.00001200
f(+0.5) = 1.093 || f(+0.05) = 1.000834 || f(+0.005) = 1.00000833
f(+0.4) = 1.057 || f(+0.04) = 1.000534 || f(+0.004) = 1.00000533
f(+0.3) = 1.031 || f(+0.03) = 1.000300 || f(+0.003) = 1.00000300
f(+0.2) = 1.014 || f(+0.02) = 1.000133 || f(+0.002) = 1.00000133
f(+0.1) = 1.003 || f(+0.01) = 1.000033 || f(+0.001) = 1.00000033
Press return to continue.
****************************
f : x-> tan(x)/x
Approximate f(x) by the left,
for x near 0.
f(-1.0) = 1.557 || f(-0.10) = 1.003347 || f(-0.010) = 1.00003333
f(-0.9) = 1.400 || f(-0.09) = 1.002709 || f(-0.009) = 1.00002700
f(-0.8) = 1.287 || f(-0.08) = 1.002139 || f(-0.008) = 1.00002133
f(-0.7) = 1.203 || f(-0.07) = 1.001637 || f(-0.007) = 1.00001633
f(-0.6) = 1.140 || f(-0.06) = 1.001202 || f(-0.006) = 1.00001200
f(-0.5) = 1.093 || f(-0.05) = 1.000834 || f(-0.005) = 1.00000833
f(-0.4) = 1.057 || f(-0.04) = 1.000534 || f(-0.004) = 1.00000533
f(-0.3) = 1.031 || f(-0.03) = 1.000300 || f(-0.003) = 1.00000300
f(-0.2) = 1.014 || f(-0.02) = 1.000133 || f(-0.002) = 1.00000133
f(-0.1) = 1.003 || f(-0.01) = 1.000033 || f(-0.001) = 1.00000033
Press return to continue.
****************************
With the table we arrive at the following conjecture.
lim x->0 tan(x)/x = 1
Press return to continue.