Quelques propriétés des valeurs propres. Matrices symétriques conjugués


Installer et compiler ces fichiers dans votre répertoire de travail.


c07a.c
/* ------------------------------------ */
/*  Save as :  c07a.c                   */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define  TAB  R4 
#define  RCA  R3  
/* ------------------------------------ */
void fun(void)
{
double **A[TAB];
double **P[TAB];
double **InvP[TAB];

double **T = i_mZ(RCA,RCA);
double **EigsValue = i_mZ(RCA,C1);

int c;
int Yes = 0;

  for(c=C0; c<TAB; c++)
     {   
         A[c] = i_mZ(RCA,RCA); 
         P[c] = r_mZ(i_mZ(RCA,RCA),999); 
      InvP[c] = inv_mZ(P[c],i_mZ(RCA,RCA));       
	   } 

  rcsymmetric_mZ(A[0],99);
  
    for(c=C0; c<(TAB-C1); c++)
     {   
        mul_mZ(InvP[c],A[c],T); 
        mul_mZ(T,P[c],A[c+C1]);
	   } 

  clrscrn();
  for(c=C0; c<TAB; c++)
     {
	  printf(" A[%d] : ",c); 
      p_mZ(A[c],S10,P2,S10,P2,C6);
      
	  printf(" EigsValue  of A[%d] : ",c); 
	  eigs_mZ(A[c],EigsValue); 
      p_mZ(EigsValue,S12,P2,S12,P2,C6); 
      if(Yes){
			    stop();
			  clrscrn();
			   Yes=0; }
      else{       
		       Yes=1;}    
     } 

  for(c=C0; c<TAB; c++)
     { 
	   f_mZ(A[c]);
	   f_mZ(P[c]);		 
	   f_mZ(InvP[c]); 
	   }
	   
  f_mZ(T);       
  f_mZ(EigsValue); 
}
/* ------------------------------------ */
int main(void)
{
time_t t;

  srand(time(&t));
  
  do{
        fun();
        
  }while(stop_w());

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Quatre Matrices semblables. Elles ont toutes les mêmes valeurs propres.


Exemple de sortie écran :
 A[0] : 
 +24893.00     +0.00i    +754.00  +9391.00i   +1425.00  -2417.00i 
   +754.00  -9391.00i  +27154.00     +0.00i   -5374.00  -6171.00i 
  +1425.00  +2417.00i   -5374.00  +6171.00i  +11763.00     +0.00i 

 EigsValue  of A[0] : 
   +37970.40       -0.00i 
   +17765.50       +0.00i 
    +8074.10       -0.00i 

 A[1] : 
 +12832.45 -13129.71i  -15064.46   -762.96i   +4629.66  +1783.79i 
  -5663.52 +22033.72i  +27814.32  +8629.97i   -3218.24  +2698.98i 
 +37694.64  -1368.37i   +8742.16 -20920.48i  +23163.23  +4499.74i 

 EigsValue  of A[1] : 
   +37970.40       -0.00i 
   +17765.50       +0.00i 
    +8074.10       +0.00i 

 Press return to continue. 


 A[2] : 
 +11536.02 -17478.05i   +3238.16  -4994.75i   -8171.46  +8572.27i 
  +8184.36 +22208.73i  +13415.67  +8086.72i   +4399.66  -9437.23i 
 -34845.78  +5764.27i   -9562.74 -10743.00i  +38858.32  +9391.33i 

 EigsValue  of A[2] : 
   +37970.40       -0.00i 
   +17765.50       +0.00i 
    +8074.10       -0.00i 

 A[3] : 
 -14139.87 +62091.22i  -91601.84 -30886.36i  +54101.57 +42347.62i 
 -26747.86 -13853.02i  +31691.40 -39770.64i  -18741.23 +20522.77i 
 +29157.79 +21657.12i  -23811.17 +44928.57i  +46258.47 -22320.59i 

 EigsValue  of A[3] : 
   +37970.40       +0.00i 
   +17765.50       -0.00i 
    +8074.10       -0.00i 

 Press   return to continue
 Press X return to stop