Calcul tensoriel/Notions élémentaires/Rotationnel

Tenseur rotationnel

modifier

Étant donné un champ de vecteurs covariants   dans un espace de dimension quelconque, la dérivée covariante   est un tenseur. Le tenseur rotationnel, défini comme   est par construction un tenseur antisymétrique.

Expression à partir de la dérivée simple

modifier

La symétrie   du symbole de Christoffel permet d'écrire le tenseur rotationnel à partir de la dérivée simple :  .

Rotationnel en dimension 3

modifier

En dimension 3, le tenseur dualiseur permet de construire le vecteur dual d'un tenseur antisymétrique d'ordre 2. Le rotationnel d'un champ de vecteurs  tridimensionnel est défini comme le dual du tenseur rotationnel :  .

Partant d'un champ de vecteurs en coordonnées contravariantes  , mettant à profit l'antisymétrie du tenseur dualiseur, la nullité de la dérivée covariante du tenseur métrique   ainsi que sa symétrie, on trouve  .