Calcul tensoriel/Appendices/Équations de Lagrange

Étant donné un système de coordonnées quelconque , une variable permettant de paramétrer les trajectoires, on considère une fonction L qui ne dépend que des variables et leur dérivée totale par rapport à . On veut trouver une trajectoire d'extrémités données et , qui minimise l'intégrale

Considérons une trajectoire infiniment voisine avec un infiniment petit et . Supposant que les solutions sont trouvées et donné, la fonction

est minimale pour  :

Intégrant par parties le second terme sous l'intégrale et profitant du fait que a été supposée nulle aux bornes, on a

Comme la fonction est quelconque, on doit avoir

  • Remarques
    1. En mécanique classique, le paramètre est le temps et ces équations sont les équations de Lagrange proprement dites.
    2. Si le paramètre est la longueur de la trajectoire, ces équations fournissent l'équation géodésique.