« Planétologie/La planète Mercure » : différence entre les versions

Contenu supprimé Contenu ajouté
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 47 :
La surface de Mercure est entièrement criblée de cratères, ce qui signifie que Mercure est un astre géologiquement mort. Si la moindre activité géologique avait eu lieu, qu'il s'agisse de tectonique, de volcanisme ou d'érosion, elle aurait effacé les cratères. Leur présence indique donc que Mercure n'a pas de tectonique des plaques, de volcanisme ou d'érosion. Les seules zones où les cratères semblent avoir été partiellement effacés sont dispersées à la surface de Mercure et sont de petite taille. Elles se voient sous la forme de plaines sombres, formées lors d'épanchements volcaniques. Mais Mercure a peu d'épanchements de lave à sa surface, trop peu pour effacer beaucoup de cratères. La plupart des épanchements volcaniques sont situés dans les cratères, et se sont formés suite à l'impact. Mais on trouve aussi quelques épanchements de grande taille, qui ont pu recouvrir des zones assez importantes. Les épanchements de lave en question sont surtout localisés dans l'hémisphère nord. Les deux plus importants sont les plaines ''Budh'' et ''Tir'' (''Budh'' et ''Tir planitiae'').
 
Au niveau des pôles, des observations radar montrent des points brillants. Une hypothèse suppose que ces points sont des morceaux de glace, qui reflèteraientrefléteraient la lumière et les ondes radar. La présence de glace ne semble pas vraiment compatible avec la température de la surface exposée au Soleil, qui la ferait fondre. La température est de +450°C lors de la journée, mais de -150°C la nuit. Il est cependant supposé que de la glace pourrait subsister dans certains cratères dont le fond n'est jamais exposé au Soleil. Cela expliquerait pourquoi la glace ne se trouve qu'au niveau des pôles.
 
===Les cratères d'impact===
 
Les cratères de Mercure sont relativement "petits", mais certains se démarquent par leur grande taille. Le plus grand cratère de Mercure est le cratère nommé '''Caloris Planitia''', un cratère de 1550 kilomètres dont le fond semble être rempli de lave solidifiée. A ce propos, l'impact qui a donné ce cratère aurait été si puissant qu'il aurait eu des répercussions aux antipodes. AÀ l'opposé de ce cratère, de l'autre côté de Mercure, on trouve un ensemble de petits monticules d'assez grande taille, qui se démarque des terrains environnants. Il se serait formé suite à l'impact : les ondes sismiques de l'impact, les ondes de choc, se seraient propagées à la surface de la planète avant de se rejoindre aux antipodes. Leur concentration aux antipodes aurait donné naissance aux monticules, en raison de répercussions tectoniques locales. Mais revenons aux cratères de grande taille, qui ne se limitent pas au cratère Caloris. On peut aussi le cratère Rodin, beaucoup plus petit : 240 kilomètres de diamètre. Il est suivi par le cratère Ibsen, de 160 kilomètres de diamètre.
 
===Les failles et plis de rétraction===
Ligne 154 :
Une première explication serait que le noyau solide de Mercure conserverait une aimantation rémanente. La planète aurait eu un champ magnétique durant sa jeunesse, quand son noyau était encore partiellement liquide. Le noyau solide, en se formant durant cette période, se serait aimanté et aurait conservé le champ magnétique de l'époque. Mais cette explication ne tient pas pour une raison simple : le noyau, bien que solide est trop chaud. Il faut savoir qu'au-delà d'une certaine température, appelée la température de Curie, un métal perd son magnétisme. Et sur Mercure, le noyau est au-delà de sa température de Curie. Or, le noyau de Mercure est censé avoir conservé une température supérieure à 770°c, ce qui correspond à la température de Curie du Fer. Donc, le noyau de Mercure ne peut pas avoir conservé une magnétisation permanente, à moins que quelque chose n'échappe aux scientifiques.
 
La seule explication à l'existence du champ magnétique est que le noyau de Mercure serait partiellement liquide. Cela expliquerait non seulement la présence du champ magnétique Mercurien, mais aussi diverses observations sur son orbite. Le mécanisme qui donnerait naissance au champ magnétique serait différent de la dynamo auto-entretenue des autres planètes. Mercure ne tourne pas assez vite pour que le mécanisme se mette en place. AÀ la place, on suppose que la différence de température entre noyau solide et manteau donnerait naissance à des courants de convection.
 
==L'histoire géologique de Mercure==