« Psychologie cognitive pour l'enseignant/Exercices et exemples : comment rendre la pratique efficace ? » : différence entre les versions

Contenu supprimé Contenu ajouté
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 :
{{Psychologie cognitive pour l'enseignant}}
Apprendre à résoudre des problèmes est un point crucial dans certaines disciplines. Qu'il s'agisse de problèmes mathématiques, de problèmes de physique, d'exercices de biologie, etc; les mécanismes mentaux de résolution de problème sont presque toujours les mêmes, et les connaitreconnaître permet de déduire des recommandations pédagogiques diverses et variées. Or, la charge cognitive va aussi jouer dans l'acquisition de stratégies ou de procédures, et pourra diminuer l'efficacité des exercices donnés aux élèves. Dans ce qui va suivre, nous allons voir quelles recommandations peut nous donner la théorie de la charge cognitive quand il s'agit de résolution de problème.
 
==Les stratégies de résolution de problèmes==
 
Résoudre un problème demande d'utiliser ses connaissances, ou de mobiliser des procédures connues pour les appliquer. Il est donc évident que connaitreconnaître les connaissances et procédures nécessaires est un pré-requis absolu pour résoudre des problèmes. Mais cela ne suffit pas, mobiliser ses connaissances demandant de pouvoir activer les connaissances et procédures quand c'est nécessaire ou pertinent. Cela demande des '''connaissances conditionnelles''', qui indiquent quand il faut mobiliser telle ou telle connaissance/procédure/stratégie/méthode, etc.
 
===Les stratégies de réflexion d'un expert===
 
Seul l'expert a pu forger, avec son expérience, de telles connaissances conditionnelles, qui lui permettent d'appliquer ses connaissances de manière efficace. Elles lui permettent d’accéder aux informations pertinentes pou résoudre un problème sans avoir à réfléchir, en se basant uniquement sur leur mémoire. Ces connaissances prennent la forme de '''schémas''' (le terme a plusieurs sens en psychologie cognitive), des catégories de problèmes qui sont reliées aux informations pertinentes pour leur résolution. C'est grâce à eux que l'expert peut reconnaitrereconnaître si un problème correspond ou non à une situation connue. Ces schémas sont reliés aux connaissances et aux concepts nécessaires pour résoudre le problème. Ils sont aussi reliés à des procédures de résolution, ce qui permet d'appliquer des solutions stéréotypées à une classe de problème bien précise sans avoir à formuler d'hypothèses.
 
Pour donner un exemple, on va prendre l'exemple d'un joueur de Football professionnel, qui doit gérer à tout moment sa position sur le terrain et ses actions en fonction de divers paramètres tactiques. Ce Footballer a mémorisé lors de son entraînement une grande quantité de configurations de jeu, chacune d'entre elle étant reliée à une solution tactique stéréotypée. La même chose a lieu chez les joueurs d'échec : ils ont mémorisé un grand nombre de configurations de jeu, chaque configuration étant reliée au meilleur coup à jouer. Ce genre de chose permet aussi d’expliquer les performances en mathématique ou en physique de nombreux élèves.
Ligne 47 :
Un oiseau a pondu une vingtaine d’œufs. Au total, 7 œufs se font manger par des prédateurs avant d'éclore. Les œufs ont éclos, combien de poussins sont nés ?
 
Là ou les analogies de surface demandent simplement de remarquer des points communs, les analogies profondes permettent de reconnaitrereconnaître des catégories de problèmes qui se résolvent d'une certaine façon. Le traitement des sujets performants se base donc plus sur un traitement conceptuel que sur la simple présence de points communs entre les deux situations. Mais ce traitement conceptuel n'est possible que parce que les sujets performants ont abstrait des structures mentales élaborées, qui permettent de reconnaitre des types de problèmes bien précis. Ces catégories de problèmes sont de plus connectées à la procédure de résolution du problème. Le tout, la somme catégorie et procédure, est appelée un ''schéma'' dans la littérature sur la résolution de problèmes.
 
===Des méthodes de raisonnement différentes===
Ligne 57 :
==L'apprentissage de la procédure, avant les exemples et exercices==
 
Avant de passer aux exemples et aux exercices, il est possible de fournir quelques explications qui aident l'élève à mieux réaliser les exercices. Ces explications sont implicites, dans le sens où un élève qui a mémorisé la procédure et sait la réaliser ne connaitconnaît pas forcément ces informations. Par exemple, un élève qui sait multiplier sait reconnaître les types de problèmes qui se résolvent par multiplication, mais il aura du mal à expliquer pourquoi il faut multiplier pour tel problème et pas pour tel autre. Il le sait, mais cette connaissance reste implicite, non verbalisable. De même, il ne sait peut-être pas ce qui se cache derrière la procédure de multiplication, pourquoi on procède en enchainantenchaînant telle étape avec telle étape. Pourtant, ces informations sont utiles pour l'élève et lui permettent de mieux réussir les exercices. Il faut donc les expliciter, les enseigner verbalement aux élèves.
 
===Découper les procédures en sous-procédures===
Ligne 71 :
* Deuxièmement, dans le cas d'exemples présentés sous forme de textes, il ne faut pas hésiter à donner des indices visuels. Ces indices doivent indiquer que telles étapes forment une sous-procédure. Le simple fait de séparer la sous-procédure du reste par des interlignes est une solution possible.
 
: Formellement, ce conseil aurait eu toute sa place dans le chapitre "Réduire la charge cognitive intrinsèque". Après tout, ce conseil se base sur le processus de regroupement, comme toutes les autres méthodes de réduction de la charge cognitive intrinséqueintrinsèque. Mais j'ai préféré le placer ici car c'est un conseil qui ne s'applique qu'aux procédures, sujet de ce chapitre. Alors que les conseils du chapitre sur la charge intrinsèque s'appliquent surtout aux connaissances conceptuelles, factuelles ou verbale.
 
===Expliquer pourquoi on passe d'une étape à une autre===
Ligne 107 :
====Varier les exemples travaillés a un impact sur la charge cognitive====
 
Les études sur le sujet ont clairement montré que varier les exemples travaillés entraineentraîne une augmentation subjective de la charge cognitive. Ce qui est économisé d'un côté en utilisant des exemples travaillés est dépensé de l'autre en variant les exemples. Mais ce n'est pas un mal car le fait de varier les exemples permet un meilleur apprentissage, en permettant à l'élève de mieux comprendre l'ensemble des situations qui correspond à un type de problème. Généralement, l'usage d'exemples travaillé est à l'origine d'une économie suffisante pour que l'usage d'exemples variés ne soit pas un problème. Mais il peut y avoir des situations où ce n'est pas le cas. Toute tendance a des exceptions, qu'il vaut mieux ne pas laisser de côté.
 
AÀ ce sujet, on peut citer l'étude de Paas et Van Merrienboer (1994), sur le sujet. Cette étude portait sur les calculs pour déterminer la longueur et les coordonnées d'un segment dans un plan. Elle compara les résultats de quatre groupes : un avec des exemples travaillés très variés, un autre avec des exemples travaillés peu variés, un autre avec des exercices très variés et un dernier avec des exercices peu variés. Dans les groupes avec des exercices/exemples variés, les étudiants recevaient des problèmes où ils devaient calculer les coordonnées d'un segment et d'autres où ils devaient calculer la longueur du segment. Dans les groupes avec des exercices/exemples peu variés, ils recevaient des problèmes de calcul de longueur uniquement. Les résultats étaient les plus élevés pour les deux groupes avec des exemples travaillés, avec un avantage pour les exemples variés. Par contre, dans les groupes qui travaillaient des exercices sans exemples travaillés, l'effet de variation ne se manifestait pas.
 
L'étude précédente dit que si varier les exemples travaillés est très utile, varier des exercices seuls ne l'est pas forcément, en raison de la charge cognitive induite par la variation des exemples/exercices. Précisons que l'expérience précédente portait sur des exercices non-précédés par des exemples travaillés. Utiliser des exercices variés après des exemples travaillés n'entrainen’entraîne pas forcément une charge cognitive insoutenable. Et sous ces conditions, varier les exercices serait alors une bonne solution. A ce propos, nous verrons plus tard dans le chapitre que certaines techniques de variation marchent bien pour les exercices, études à l'appui. Et ces techniques devraient être d'autant plus efficaces que l'on utilise des exemples travaillés (variés ou non).
 
====Varier la structure profonde des exemples, pas leurs caractéristiques de surface====
 
Il faut donc varier les exemples, c'est à dire utiliser des exemples doivent sont différents les uns des autres sur certains points. Mais là encore, il faut bien le faire et le diable est dans les détails. Plus haut dans le chapitre, nous avons vu les deux types d'analogies : analogie de surface et analogie profonde. La première a lieu quand deux problèmes sont analogues car ils partagent des caractéristiques de surface, comme le même vocabulaire, les mêmes valeurs numériques, les mêmes phrases dans l'énoncé ou autres. Ces caractéristiques de surface ne sont par pertinentes pour résoudre le problème et elles ne sont pas des données utiles pour résoudre le problème. AÀ l'inverse, les analogies profondes relient des problèmes qui ont la même structure et se résolvent de la même manière. Les problèmes d'une même catégorie partagent la même structure profonde et se résolvent de la même manière, ce qui fait qu'ils partagent une analogie profonde. Mais ils ne partagent pas forcément les mêmes caractéristiques de surface.
 
En, 1989, Ross émit l'hypothèse qu'il valait mieux présenter des problèmes structurellement similaires avec des caractéristiques de surface similaires, afin de faciliter la formation des catégories de problèmes par les élèves. Par exemple, il vaudrait mieux présenter les problèmes de proportionnalité avec des problèmes de prix de limonade en fonction du volume acheté, alors que les problèmes de conversion entre unités devaient être présentés avec des problèmes sur la construction d'un port. Après un peu d’entrainementd’entraînement, les problèmes peuvent être variés un peu plus et avoir des caractéristiques de surface différentes.
 
Mais les études sur le sujet n'ont pas montré que cette stratégie était la bonne. Par exemple, citons l'étude de Quilici et Mayer, datée de 1996. Dans cette étude, trois groupes d'élèves devaient apprendre à utiliser des concepts statistiques (le T-test, le test chi-square, et la corrélation). Le premier groupe recevait des exemples avec des caractéristiques de surface similaires, comme conseillé par Ross. Les histoires et situations des différents exemples étaient similaires. L'autre recevait des exemples structurellement similaires, mais cachés derrière des caractéristiques de surface différentes. Les histoires et situations des exemples étaient totalement différents, mais la structure des exemples était la même. Le dernier n'avait pas d'exemples et recevait juste le cours et une description des procédures à appliquer. Le second groupe avait de meilleures performances que les deux autres, le premier et le dernier groupe ayant des performances identiques.
 
Pour résumer, il vaut mieux varier les caractéristiques de surface des problèmes et mettre l'emphase sur la structure profonde. Les caractéristiques de surface sont trompeuses au cours de l'apprentissage. Les élèves vont naturellement classer les problèmes en fonction de leurs caractéristiques de surface, qui sont les plus visibles, les plus saillantes. Mais cette classification ne servira à rien et les élèves devront l'abandonner pour une classification basée sur des caractéristiques profondes. On ne souhaite pas que les élèves croient que les caractéristiques de surface sont des caractéristiques utiles. AÀ la place, on veut que les élèves les filtrent et n'y fassent pas attention, le but étant de se concentrer sur les données utiles pour classer les problèmes. En conséquence, les exemples travaillés doivent avoir des caractéristiques de surface très différentes d'un problème à l'autre, ils doivent varier leurs caractéristiques de surface. Ainsi, les élèves comprennent rapidement que celles-ci ne permettent pas de résoudre les problèmes et ils se concentrent sur les caractéristiques profondes.
 
===Passer progressivement des exemples travaillés aux exercices autonomes===
 
Les expériences précédentes ont été répétées de nombreuses fois, pour vérifier quelque chose : quand ces exemples travaillés deviennent inutiles ? Il apparaît qu’au bout d’un certain temps, les exemples travaillés ont de moins en moins d’effets positifs. Les premières expériences sur le sujet furent des études qui comparaient la performance de deux groupes de sujets dans la durée. Elles regardaient comment les élèves évoluaient durant de longues durées, suivant qu’ils aient droit ou non à des exemples travaillés. Mais il semblerait que ce ne soit pas le temps qui soit la variable pertinente. AÀ la place, il semblerait que les exemples travaillés deviennent inutiles quand les élèves ont acquis les catégories de problèmes adéquates. Il ne leur reste plus qu'à automatiser la procédure de résolution avec de l'entrainementl’entraînement, ce pour quoi les exemples travaillés sont inutiles.
 
Dans une de leurs études datée de 2001, Kalyuga, Chandler, Tuovinen, et quelques collègues, ont vérifié si cela jouait sur l’efficacité des exemples travaillés. Dans leur première expérience, les élèves devaient apprendre à programmer des équipements industriels. Dans une expérience additionnelle, citée dans la même étude, les mêmes expérimentateurs ont reproduit cet effet sur un groupe de sujets qui apprenait à créer des équations booléennes de circuits à base de relais (ça date, je sais…) Les résultats étaient clairs : plus on présente d'exemples travaillés, plus l’effet des exemples travaillés diminue. L'explication de cet effet est assez simple : si l’élève a acquis les catégories de problèmes voulues, de nouveaux exemples travaillés ne font que répéter ce qui est déjà su et agissent comme une sorte de redondance. Cela arrive après une dizaine d’exemples travaillés, voire un peu plus (15/20).
 
A vu de ce qui vient d'être dit, on se dit qu'il faut donc faire suivre les exemples travaillés par des exercices réalisés en autonomie. Cependant, ce n'est pas la méthode la plus efficace. La transistiontransition entre exemples travaillés et exercices est trop brutale et elle n'a pas forcément lieu au bon moment pour tous les élèves en même temps. Pour éviter cela, il est possible de passer progressivement des exemples travaillés aux exercices en utilisant un intermédiaire : les exemples partiellement travaillés. Après la présentation d’exemples totalement travaillés, le professeur poursuit par des exemples partiellement travaillés, avant de laisser les étudiants résoudre les exercices eux-mêmes. La transition doit se faire de la manière la plus douce possible. Lors de l’usage d’exemples partiellement travaillés, le nombre d’étapes que les élèves doivent réaliser pour résoudre totalement l’exercice doit graduellement augmenter à chaque exercice. En utilisant cette organisation, on observe que les résultats sont meilleurs que sans. C’est ce qui est appelé le '''''Guidance fading effect'''''.
 
Cependant, cette tactique peut s’appliquer de deux manières, qui dit comment effectuer des exemples partiellement travaillés. Dans le premier cas, le professeur commence par résoudre les exemples travaillés devant les élèves, et il leur demande de les terminer à partir d’un certain point. Au fur et à mesure des exemples, le professeur s’arrête de plus en plus tôt, jusqu’à ce qu’il n’y ait plus d’étapes à enlever. Dans la seconde tactique, les élèves doivent commencer par résoudre le début de l’exercice, et le professeur termine les exercices à partir d’un certain stade. Au fil du temps, le professeur est repoussé de plus en plus vers la toute fin de l’exercice, et ne doit plus résoudre que les toutes dernières étapes de l’exemple travaillé. L’étude de Renkl, Atkinson, Maier, and Staley, datée de 2002, a montré que les deux stratégies ne sont pas égales. La tactique qui consiste à laisser les élèves résoudre la fin de l’exercice donne de meilleurs résultats. En tout cas, les deux stratégies font mieux que l’usage d’une rupture brutale entre exemples travaillés et exercices.
Ligne 139 :
===L'''interleaving'' et l'effet de variation===
 
Le contenu des exercices peut être travaillé afin de compléter au mieux les exemples travaillés. Et certains conseils applicables aux exemples travaillés le sont aussi aux exercices. Nous avons vu plus haut que l'effet de variation se manifeste à la fois pour les exercices et les exemples travaillés, mais surtout pour les exemples travaillés. Pour les exercices, la variation ajoute une charge cognitive qui peut être délétères et peut compenser les effets positifs. Mais si l'on fait précéder les exercices par des exemples travaillés, la charge cognitive des exercices devrait diminuer, les exemples travaillés ayant servi d’entrainementd’entraînement permettant de faciliter la résolution des exercices. En réduisant la charge cognitive des exercices, l'effet de variation se manifeste alors.
 
Sous ces conditions, il est préférable que les exercices soient variés, tout comme les exemples travaillés. Les exercices qui appartiennent à la même catégorie de problème doivent être différents les uns des autres, au moins superficiellement. Notons qu'en théorie, varier les exercices/exemples augmente la charge cognitive ressentie par l'élève. Lors des exemples travaillés, en début d'apprentissage, ce qui est économisé en utilisant des exemples travaillés est compensé par la variabilité des exemples. Lors des exercices, varier les exercices peut entrainerentraîner une charge cognitive plus élevée qu'avec ces exemples peu variés. Mais l'apprentissage est bien meilleur, pour une charge cognitive assez variable, qui va de moindre à légèrement supérieure. Tout est histoire de compromis entre charge cognitive et variation des exemples/exercices, mais ce compromis est surtout important pour les exemples travaillés. Lors des exercices, l'élève a acquis les connaissances antérieures qui réduisent sa charge cognitive, ce qui fait que sa charge cognitive est de base assez basse. On peut alors augmenter la charge cognitive en faisant varier les exercices sans trop de problèmes : on sait qu'il y aura la place en mémoire de travail.
 
Un autre conseil, qui peut être vu comme une variation assez extrême du précédent, est de mixer différents types de problèmes dans une même session d'exercices. D'habitude, chaque chapitre porte sur un type de problèmes particulier, qui fait l'objet d'exemples et d'exercices, avant de passer au chapitre suivant. Ce faisant, les élèves savent que les exercices visent à appliquer le cours du chapitre, et en déduisent que les exercices portent sur le type de problèmes qu'ils viennent d'aborder en cours. L'élève n'a pas besoin de former de catégories de problèmes pour résoudre ces exercices, mais a juste besoin de se souvenir du sujet du chapitre en cours. Mais lors des épreuves finales, ou dans la vie réelle, les problèmes ne surviennent pas dans l'ordre des chapitres vus en cours. Pour éviter cela, il vaut mieux mixer des problèmes liés au chapitre en cours avec des problèmes liés aux chapitres précédents. Ainsi, l'élève devra, pour répondre correctement, déduire à quel type de problème appartient chaque exercice et donc abstraire les catégories de problèmes adéquates. Cette technique, l''''interleaving''', donne de très bons résultats et ne demande pas beaucoup d'efforts de la part de l'enseignant.
Ligne 165 :
> Une particule a une vitesse de 2 mètres par seconde à un instant t. Elle accélère de 5 mètres par secondes carrées durant 25 secondes. Trouvez un maximum de valeurs.
 
Cet effet a été validé expérimentalement. Les expériences de Owen et Sweller (1985) ont comparé deux groupes d’élèves de même niveau qui recevaient des exercices de géométrie : un groupe avait un énoncé sans but, et l’autre un exercice conventionnel. On entrainaitentraînait les deux groupes d’élèves, chacun avec un type bien précis d’exercice, et on comparait les résultats avec des exercices conventionnels tout ce qu’il y a de plus normaux. Des expériences complémentaires, effectuées par Bobis, Sweller, et Cooper (1994), ont confirmé l’efficacité de cette stratégie avec des exercices de géométrie. Enfin, les études de Sweller, Mawer, et Ward (1983) ont testé l’efficacité de cette technique sur des exercices de physique. La différence était en faveur du groupe sans but dans tous les cas.
 
===L'explication de la démarche===
Ligne 171 :
Un des défauts des exercices est qu'ils permettent à l'élève de trouver la solution par essai ou erreur, sans avoir réellement compris la démarche à utiliser. Un élève qui a réussi à trouver la solution ne saura pas forcément se souvenir de comment celui-ci à fait et encore moins de savoir pourquoi il a procédé ainsi. Ce problème est souvent résolu par l'usage d'exemples travaillés, mais cela ne marche pas toujours chez certains élèves. Il arrive que les élèves se contentent de reproduire une procédure sans la comprendre.
 
Pour éviter cela, il est possible de demander à l'élève de justifier sa démarche, pourquoi a-t-il procédé ainsi, de le forcer à expliquer pourquoi ce qu'il a fait permet de trouver la solution. Ces explications permettent à l'élève d'identifier quels sont les types de problèmes et pourquoi ceux-ci doivent être résolus d'une certaine manière. Cette '''explication de la démarche''' (le terme anglo-saxon, mal-nommé, est "''self-explanation''"), donne expérimentalement de bons résultats, du moins si l'élève arrive à donner des explications correctes et élaborées.
 
===L'usage de travaux de groupe===
 
De nos jours, les pédagogies basées sur des travaux de groupe deviennent de plus en plus courantes. Ces **pédagogies coopératives** demandent aux élèves de travailler en groupes de deux personnes ou plus, que ce soit en utilisant des débats de classe, des jeux de rôles, des travaux pratiques en groupe, etc. On peut se demander pourquoi faire travailler les élèves en groupe permettrait d'améliorer l'apprentissage. On peut supposer un effet sur la motivation, mais il existe aussi une raison liée à la mémoire de travail. L''''effet de la mémoire de travail collective''' nous dit que la charge cognitive est diminuée quand on fait travailler les élèves en groupe. De plus, cet effet est valable pour tous les élèves, même ceux qui ont peu de connaissances antérieures : il ne s'agit pas d'un ''expertise reversal effect''.
 
Cela vient du fait qu'avec une bonne répartition des tâches entre élèves, la charge cognitive est répartie sur plusieurs personnes, diminuant la charge cognitive pour chaque élève. Cela implique que le travail de groupe ne fonctionne que pour des tâches complexes et est contre-productif pour les tâches simples. Avec des tâches simples, la charge de la mémoire de travail est suffisamment faible pour que les élèves puissent la gérer individuellement : il n'y a pas besoin de la répartir entre plusieurs élèves.