« Cristallographie géométrique/Introduction » : différence entre les versions

m
Du fait de la périodicité des atomes dans les cristaux, il existe plusieurs directions différentes le long desquelles l'arrangement atomique est différent. En conséquence, les propriétés physiques des cristaux (morphologie, clivage, dureté, conductivités thermique et électrique, dilatation thermique, déformation élastique, etc.) dépendent de la direction dans laquelle elles sont mesurées. Par exemple, les cristaux ont tendance à plus facilement casser suivants certaines plans, dont l'orientation dépend de l'organisation des atomes dans le cristal. De même, certains cristaux conduisent plus facilement le courant dans certaines directions, orientés parallèlement ou perpendiculairement à l'arrangement atomique du cristal. Pour cette raison, les cristaux sont anisotropes, alors que les matériaux amorphes présentent des propriétés isotropes. Une définition plus ancienne des cristaux les décrit d'ailleurs comme des corps homogènes et anisotropes.
 
Il est parfois dit que les cristaux cubique (plus précisément de symétried'arrangement cubique, maiscomme c'estla unpyrite détailou àle cesel, pointsont duisotropes. cours)Mais sontdans isotropesles faits, mais cela n'est pas vrai pour toutes leurs propriétés physiques. Un cristal d'arrangement cubique présente, comme les cristaux de symétrie moindre, une certaine morphologie naturelle qui dépend de sa composition chimique et de l'arrangement des atomes : les faces d'un cristal ont une vitesse de croissance différente selon la direction (l'environnement chimique du cristal et les conditions de température et de pression lors de sa croissance jouent aussi un rôle). La vitesse de croissance d'une face est la vitesse à laquelle une nouvelle couche d'atomes est ajoutée en surface, c'est donc la vitesse de croissance du cristal perpendiculairement à la face et pas parallèlement. Les faces qui croissent le plus vite disparaissent généralement de la morphologie du cristal et se réduisent à des arêtes ou des sommets<ref>{{en}} M. Szurgot, « Velocities of Disappearance and Lifetime of Faces of Growing Crystals », dans ''Crystal Research and Technology'', vol. 26, n{{exp|o}} 5, 1991, p. 555-562, [http://dx.doi.org/10.1002/crat.2170260505 lien doi]</ref>{{,}}<ref>{{en}} Jolanta Prywer, « Three-dimensional model of faces disappearance in crystal habit », dans ''Journal of Crystal Growth'', vol. 155, n{{exp|o}} 3-4, 1995, p. 254-259, [http://dx.doi.org/10.1016/0022-0248(95)00169-7 lien doi]</ref>. Les faces d'un cristal correspondent à des plans d'atomes assez denses dans la structure, c'est-à-dire des plans dans lesquels se trouvent beaucoup de liaisons chimiques, ce qui assure la stabilité des faces. La croissance cristalline est ainsi anisotrope pour tous les cristaux.
<div style="text-align: center;"><gallery caption="Morphologie de cristaux de symétrie cubique">
Image:Boleite-md83a.jpg|La boléite présente en général des cristaux de forme cubique.
41 129

modifications