« Psychologie cognitive pour l'enseignant/Réduire la charge cognitive intrinsèque » : différence entre les versions

Contenu supprimé Contenu ajouté
Aucun résumé des modifications
Ligne 23 :
Pour donner un exemple, on peut citer l'étude de Mayer, Mautone, et Prothero, datée de 2002. Dans cette étude, des sujets jouaient à un jeu basé sur une leçon de géologie. Les élèves qui avaient reçu une instruction sur les termes de base (faille, arc, chaîne de montagne, etc) avant de jouer avaient une meilleure performance que les sujets qui découvraient la signification de ces termes en cours de jeu. Les élèves qui découvraient les termes en cours de jeu devaient acquérir ces connaissances en même temps qu'ils réfléchissaient sur les problèmes. En comparaison, les sujets ayant reçu un enseignement préalable pouvaient se concentrer sur la résolution des problèmes posés lors du jeu.
 
Précisons à ce sujet que bien utiliser le jargon technique permet de réduire la charge cognitive intrinsèque. Le jargon est souvent rebutant, surtout pour les novices, mais s'il existe c'est pour une bonne raison. Le jargon permet de simplifier les explications ultérieures à sa présentation. Introduire un nouveau mot de jargon, c'est avant tout mettre une étiquette sur un concept ou un principe important afin de le réutiliser par la suite sans devoir faire de longues périphrases difficiles à comprendre. Et en termes de charge cognitive, le jargon est plus économe que la périphrase qu'il remplace. Le jargon rentre donc dans le cadre du pré-entrainement s'il est introduit assez tôt. C'est tout le paradoxe du jargon : d'un cotécôté il est compliqué à apprendre, de l'autre il rend les explications plus simples, plus claires, moins chargées. On comprend ainsi qu'introduire un mot de jargon n'est utile que si cela simplifie les explications qui suivent. Et encore, seulement sous la condition que l'explication du jargon soit simple, pour ne pas perdre d'un cotécôté ce qu'on gagne de l'autre.
 
===Factoriser certaines portions "indépendantes" d'une explication===
Ligne 59 :
Maintenant, voyons voir un autre cas particulier, qui a été étudié par l’expérience de Ayres de 2006 sur l'apprentissage de l'algèbre et l'expérience de 2010 de Blayney, Kalyuga, et Sweller sur l'apprentissage de l'utilisation d'un tableur pour des applications de comptabilité. Dans cette dernière, les élèves devaient apprendre à utiliser un tableur pour faire des calculs de comptabilité afin de faire un budget. Lors de la première phase de l'expérience, les élèves étaient séparés en deux groupes. Le premier effectuait la tâche complète dans une seule feuille de tableur, en utilisant une formule dans laquelle de nombreux sous-calculs étaient combinés pour donner le résultat. Dans le second, chaque sous-calcul était réalisé dans une feuille de tableur séparée et leurs résultats étaient combinés dans une autre feuille de tableur. Lors de la seconde phase, les élèves étaient testés sur la tâche complète. Les résultats montraient que le second groupe faisait mieux que le premier.
 
L'exemple précédent peut vous faire penser à un autre conseil donné plus haut : découper une procédure en sous-procédures. Il y a de cela, avec cependant une petite différence. Plus haut, quand on parlait de découper une procédure en sous-procédures, les sous-procédures devaient être enchaînées l'une après l'autre pour donner un résultat. Dans l'expérience précédente, les sous-procédures sont indépendantes et ne s’enchaînent pas. Les calculs réalisés dans chaque feuille de tableur peuvent être faits dans le désordre et leurs résultats sont combinés. C'est là une nuance avec le conseil donné plus haut : d'un cotécôté une procédure séquentielle dont on regroupe certaines étapes, en faisant en sorte que les regroupements aient quelque chose de logique, de l'autre une procédure hiérarchique dans laquelle des sous-résultats indépendants sont combinés entre eux.
 
Pour donner un autre exemple, je vais citer l'exemple de la procédure des minterms en électronique, qui parlera surtout aux professeurs de matières technologiques. Cette méthode permet de créer un circuit électronique numérique simple, qui prend en entrée une suite de bits fournit un résultat de 1 bit (0 ou 1). La méthode permet de concevoir ce circuit à partir de sa "table de vérité", un tableau qui dit quel est le bit de sortie en fonction de l'entrée. La méthode des minterms demande de sélectionner certaines lignes de la table, d'appliquer une sous-procédure sur celles-ci, avant d'en combiner les résultats. La sous-procédure permet de calculer ce qui s'appelle un minterm. Dans la plupart des cas, la procédure est présentée complète et les élèves appliquent la totalité de la procédure dans les exercices d’entraînement (c'était comme cela quand j'étais élève, c'est le cas dans tous les manuels que j'ai lu ou utilisé en tant que professeur dans le domaine). Appliquer la méthode d'isolation dans ce cas particulier donnerait un tout autre résultat. À la place, les élèves verraient la sous-procédure indépendamment et feraient des exercices dessus. On apprendrait aux élèves à calculer le minterm d'une suite de bit, les élèves feraient des exercices d'application, et ainsi de suite. Puis, dans une seconde phase, on apprendrait aux élèves la procédure complète, qui revient juste à sélectionner certaines lignes bien précises de la table de vérité, calculer le minterm de celles-ci, puis combiner le résultat.