Différences entre les versions de « Neurosciences/Le métabolisme cérébral »

m
typo
m (typo)
 
Le cerveau est un organe qui consomme beaucoup d'énergie : près de 20% de la consommation énergétique du corps est de son fait, alors qu'il ne pèse que 2% de son poids ! Il faut dire que faire fonctionner les neurones demande de l'énergie, d'autant que ceux-ci sont actifs. Générer des potentiels d'action demande une certaine énergie, produire des neurotransmetteurs aussi, sans compter l'action des pompes et canaux ioniques de la membrane. Le cerveau utilise la majeure partie de son énergie pour faire fonctionner ses pompes et canaux ioniques, principalement les pompes. Celles-ci vont, pour rappel, pomper certains ions en dehors de la cellule, contre leur gradient de concentration. Cela demande naturellement de l'énergie, pour contrer l'effet de la concentration plus importante dans le milieu extérieur. Chaque pompe va ainsi utiliser une ou plusieurs molécules d'ATP pour faire sortir un ion. Cela ne parait n'être pas grand -chose, mais cela compte pour 50% du métabolisme de base du cerveau !
 
==Le métabolisme énergétique du cerveau==
 
Le cerveau est un organe qui consomme beaucoup d'énergie. On estime qu'il est responsable, à lui seul d'environ 25% de la consommation énergétique du corps. Après, la valeur exacte varie beaucoup selon un paquet de paramètres différents. Par exemple, on sait que la consommation énergétique du cerveau dépend de sa température. On estime qu'une réduction de 1°c réduit la consommation énergétique cérébrale de 6 à 5% environ. Cela a d'ailleurs des applications thérapeutiques, dans les cas d'AVC, d'arrêt cardiaquescardiaque ou d'autres situations similaires où le cerveau manque d'oxygène. Dans ces situations, on refroidit le cerveau pour ralentir son métabolisme. Cela réduit l'apparition de lésions cérébrales, causées par un métabolisme anormal lié au manque d'oxygène. Quoiqu'ilQuoi qu’il en soit, le métabolisme cérébral dépend de bien d'autres paramètres, et il serait inutile d'en faire une liste exhaustive.
 
===Les sources d'énergie du cerveau===
====Le glucose et l'oxygène====
 
En temps normal, le cerveau consomme du sucre par respiration cellulaire, la fermentation étant minimale. Le sucre le plus utilisé par le cerveau est le glucose, du moins en temps normal, mais des molécules similaires au glucose peuvent être utilisésutilisées en lieu de place de celui-ci : c'est le cas pour le pyruvate, le mannose et le lactate. Les expériences qui ont montré cela sont assez simples à expliquer. Elles se bornent à comparer la composition du sang entre les artères qui alimentent le cerveau et les veines qui en sortent. Ces mesures montrent alors que le sang est identique entre l'entrée et la sortie, si ce n'est que sa teneur en glucose et en oxygène est plus basse dans les veines que dans les artères, sans compter que sa teneur en dioxyde de carbone augmente.
 
Les mesures précédentes traduisent le fait que le cerveau utilise ce qu'on appelle la respiration cellulaire aérobie pour produire son énergie : il consomme de l'oxygène et du glucose et produit de l'énergie et du dioxyde de carbone. Cependant, ces mesures montrent que tout l'oxygène n'est pas converti de cette manière. Si tout le glucose était utilisé ainsi, 100 grammes de cerveau devraient consommer 26 millimoles de glucose par minutes. Or, la valeur mesurée est de 31 millimoles par minutes. Il y a donc une petite différence de 4,4 millimoles par minutes, qui est utilisée autrement. Dans le détail, on verra que ce glucose est transformé et stocké dans les astrocytes et les neurones, il est mis en réserve.
Outre le glucose, les protéines et des dérivés de la désagrégation des graisses peuvent être consommés par le cerveau pour produire de l'énergie. Encore une fois, cette production s'effectue par le biais de la respiration cellulaire aérobie et le cerveau n'est pas le seul à pouvoir faire cela (tous les tissus peuvent brûler des protéines ou des lipides dans le cycle de Krebs). Par contre, le métabolisme cérébral des graisses est différent du métabolisme des autres tissus. En effet, le cerveau ne peut pas bruler les acides gras pour produire de l'énergie, contrairement aux autres tissus. La raison est que les acides gras ne peuvent pas traverser la barrière hémato-encéphalique. Par contre, le cerveau peut bruler les '''corps cétoniques''', des dérivés de la désagrégation des graisses qui peuvent traverser la barrière hémato-encéphalique et alimenter le cerveau en énergie. Parmi les corps cétoniques, deux alimentent le cerveau et le cœur en énergie : l'acétylacétate et le β-D-hydroxybutyrate.
 
Cependant, la production de corps cétoniques n'arrive que dans des conditions très particulières. Il faut que le corps manque de sucres (glucose) au point que le foie en est réduit à bruler des graisses. Le métabolisme des lipides et acides gras donne alors naissance à des corps cétoniques, par un processus dit de cétogenèse. Par exemple, cela arrive en cas de diabète ou de jeûne : l'alimentation en sucre étant alors inadéquate, le cerveau doit utiliser d'autres voies que la consommation de glucose. Un autre exemple est celui des nouveaux-nés allaités, dont l'alimentation est très richesriche en lipides et en acides gras. Dans tous les exemples précédents, les réactions chimiques utilisées pour produire de l'énergie à partir de lipides ou de protéines sont les mêmes : les voies métaboliques des nouveaux-nés sont réactivées en cas de jeûne ou de diabète.
 
===L'hypoxie cérébrale===
====La cascade ischémique====
 
La première étape est une série de réactions chimiques qui s'appelle la '''cascade ischémique''', qui fait suite à un manque d'oxygène. Pour faire simple, le cerveau réagit en passant à des réactions de fermentation pour consommer les sucres. Mais l'usage de la fermentation pose divers problèmes. En premier lieu, elle ne fournit pas assez d'énergie pour les pompes et canaux ioniques. L'équilibre ionique du cerveau est alors perturbé, avec une accumulation d'ions dans ou en- dehors des neurones. En second lieu, la fermentation produit des déchets qui sont toxiques pour les neurones. Or, ceux-ci peuvent entrainer des dommages s'ils ne sont pas évacués du cerveau. La majorité des dommages provient, de manière indirecte, du déséquilibre ionique, qui intoxique les neurones de l'intérieur.
 
Le dysfonctionnement principal est l'arrêt de certaines pompes ioniques, notamment des pompes au potassium, au calcium et au sodium. Cela mène à une ''accumulation de sodium et de calcium dans les neurones''. En premier lieu, le calcium va s'accumuler dans les neurones. Or, le calcium est toxique pour les cellules, ce qui peut forcer l'apoptose des cellules (leur suicide). De plus, ce calcium favorise la libération des neurotransmetteurs, dont le glutamate. Or, le glutamate fait rentrer encore plus de calcium via les récepteurs NMDA et AMPA. Rappelons que c'est pour cela que le glutamate a des propriétés excitotxiques, à savoir qu'il peut exciter les neurones à l'excès, jusqu’à en devenir toxique. Les effets excitotoxiques du glutamate proviennent de là, et ceux-ci s'expriment avec force lors de l'ischémie, bien plus que dans des conditions normales. Limiter les dégâts de la cascade ischémique demande d'agir vite afin de stopper celle-ci avant qu'un trop grand nombre de neurones soient morts. Une autre possibilité serait d'atténuer l'excitotoxicité du glutamate, en utilisant des antagonistes des récepteurs NMDA et AMPA. Mais cette stratégie n'a pas donné de bons résultats dans les études réalisées à l'heure actuelle (mi-2017).
Un autre défaut est que le sodium s'accumule dans les neurones, ce qui en perturbe l'équilibre hydroélectrique (pour les connaisseurs, l'équilibre osmotique). Les raisons à cela sont multiples. Déjà, les pompes ioniques calcium-sodium vont tenter d'évacuer le calcium dans les neurones, mais cela fait rentrer du sodium. De plus, certaines pompes ioniques potassium-sodium vont dysfonctionner, en raison du manque d'ATP, ce qui réduit l'élimination de sodium intraneuronale. Tout cela fait que les neurones tendent à accumuler beaucoup d'ions sodium dans leur cytoplasme. Sans rentrer dans les détails, cela a une conséquence : de l'eau s'accumule dans les neurones, qui gonflent. Il se produit alors un œdème cérébral, qui fait gonfler le cerveau et le compresse sur le crâne. Cette pression entraine des lésions assez graves, si elle est assez intense. Mais nous en reparlerons dans le chapitre sur la pression intracrânienne, qui parlera des œdèmes cérébraux en général.
 
Enfin, la fermentation produit des déchets métaboliques, les deux principaux étant : le lactate et des ions hydrogène. Les deux sont toxiques pour les neurones, quand ils sont en excès, ce qui est le cas lors d'une hypoxie cérébrale. L'accumulation de lactate est moins problématique que l'accumulation des ions hydrogène. Cette dernière fait que le pH diminue, entraînant une une acidose métabolique, perturbant les réactions chimiques cérébrales.
 
[[File:Cascade ischémique 02.svg|centre|vignette|upright=3.0|Description simplifiée de la cascade ischémique.]]
==Les interactions neurones-astrocytes==
 
Les molécules dissoutes dans le sang doivent traverser la barrière hémato-encéphalique pour arriver aux neurones. Leur passage à travers celle-ci fait intervenir des molécules appelées ''transporteurs''. Pour rappel, ce sont des "récepteurs" qui permettent à une molécule de passer d'un cotécôté à l'autre d'une membrane cellulaire. Ici, la molécule en question est une molécule sanguine et les membranes sont celles de la barrière hémato-encéphalique. Les transporteurs sont spécialisés, dans le sens où ils ne laissent passer que quelques molécules bien précises et pas les autres. Par exemple, les transporteurs pour le glucose permettent uniquement le passage du glucose, mais pas des autres molécules. Quoiqu'ilQuoi qu’il en soit, les molécules sanguines traversent la barrière hémato-encéphalique, du moins pour celles qui ont un transporteur adapté, mais elles n'arrivent pas directement dans les neurones ou dans le fluide entre les neurones. Rappelons que la barrière hémato-encéphalique est composée de deux couches : un vaisseau sanguin, entouré par des astrocytes. Les transporteurs localisés à la surface des vaisseaux sanguins cérébraux permettent aux molécules de passer dans les astrocytes, qui se chargent ensuite de les redistribuer aux neurones par divers mécanismes. Pour résumer, les molécules traversent la barrière hémato-encéphalique, se retrouvent dans les astrocytes, puis sont transférées aux neurones à la demande. Autant dire que les interactions entre neurones et astrocytes sont très importantes pour le métabolisme cérébral.
 
Rappelons que les astrocytes n'ont pas beaucoup de transporteurs différents, les principaux étant les transporteurs pour le glucose. L'absence de transporteurs pour de nombreuses molécules/ions empêche la majorité des ions et molécules de traverser les astrocytes et d'atteindre le cerveau. C'est pour cela que la barrière hémato-encéphalique est aussi sélective.
===Le métabolisme du glucose===
 
Les astrocytes ont un rôle très important dans le métabolisme énergétique des neurones. Pour simplifier, les astrocytes servent de réservoir d'énergie à disposition des neurones : ils captent le glucose sanguin, le mettent en réserve, et le distribuent aux neurones à la demande. Ils servent donc de réservoir d'énergie, dans lequel les neurones alentours peuvent puiser s'ils en ont besoin. AÀ noter que les astrocytes stockent l'énergie non pas sous la forme de glucose, mais dans des molécules de glycogène et de lactate. Rappelons que le glycogène est synthétisé à partir du glucose. Le glycogène se fabrique en liant plusieurs molécules de glucose entre elles, d'une manière extrêmement compacte. C'est la forme sous laquelle les sucres sont stockéesstockés dans la plupart des cellules, cette moléculesmolécule contenant une grande quantité d'énergie dans un volume très petit. Les astrocytes en concentrent de grandes quantités pour répondre aux besoins métaboliques des neurones, ainsi que pour leur fonctionnement. Si le besoin s'en fait sentir, les liaisons de la molécule de glycogène sont brisées par des enzymes, ce qui libère de nombreuses molécules de glucose, de lactate, ou d'autres formes de sucres.
 
Le transfert du glucose des astrocytes aux neurones peut se faire de diverses manières, mais il se fait principalement sous la forme de lactate. Les astrocytes libèrent du lactate dans le milieu extracellulaire, qui est capté par les neurones. Ce lactate est produit dans les astrocytes par dégradation du glucose et est destiné non au stockage, mais à la consommation immédiate. Dans le détail, le glucose est dégradé en pyruvate, qui est lui-même transformé en lactate. Le lactate est alors envoyé aux neurones, qui synthétisent du pyruvate avec, pyruvate qui est utilisé par la respiration aérobie (cycle de Krebs). On peut préciser que la libération du lactate par les astrocytes est couplée aux besoins des neurones par divers mécanismes. Ce qui veut dire que les astrocytes détectent que les neurones ont besoin d'énergie, et libèrent du lactate selon quand les besoins s'en font sentir. Le premier est que les neurones ont surtout besoin d'énergie, et donc de sucres, après avoir émis des potentiels d'action. Or, les astrocytes mesurent en permanence la quantité de neurotransmetteurs dans le milieu extra-cellulaire : plus il y en a, plus les neurones ont dépensés d'énergie pour les émettre et plus ils ont besoin d'énergie. Pour être plus précis, ils mesurent la quantité de glutamate, non de tous les neurotransmetteurs. Pour résumer, la liaison du glutamate sur les récepteurs astrocytaires va stimuler la libération du lactate dans le milieu extra-cellulaire, qui est ensuite assimilé par les neurones.
La vitamine B6 existe sous plusieurs formes différentes, mais seules trois d'entre elles entrent dans le cerveau : le pyridoxal, la pyridoxine et la pyridoxamine. Ce sont des formes inactives, qui demandent à être phosphatées pour devenir des formes actives de la vitamine B6, à savoir du phosphate de pyridoxal, du phosphate de pyridoxine ou du phosphate de pyridoxamine. Dans le cerveau, les formes inactives de B6 sont transformées en phosphate de pyridoxal par deux enzymes : la PK et la PNPO (''Pyridoxine 5'-phosphate oxidase''). Le phosphate de pyridoxal intervient ensuite dans la dégradation de la lysine et de la proline (deux acides aminés), via deux voies métaboliques différentes dans laquelle de nombreuses enzymes interviennent. Dans ce réseau métabolique, divers troubles peuvent survenir.
 
La plus fréquente, la ''carence en vitamine B6'' perturbe le fonctionnement global du cerveau. Une déficience en vitamine B6 entraine donc une baisse de production des neurotransmetteurs cités plus haut, qui touche préférentiellement la synthèse du GABA et de la sérotonine. La baisse de GABA induite se traduit par une hausse de l'activité électrique des neurones, avec deux conséquences principales : un mauvais sommeil et, plus rarement, des crises épileptiques. La baisse de sérotonine et de dopamine se manifeste quant à elle par un état anxio-dépressif et une hausse de l'impulsivité et de la nervosité. La déficience peut aussi se manifester dans le système nerveux périphérique par une inflammation généralisée des nerfs (une polynévrite). AÀ l'inverse, une surdose de vitamine B6 n'entraine pas de symptômes clairs, tant que la surdose n'est pas prolongéprolongée. Cependant, une complémentation en B6 prolongée durant plusieurs mois peut engendrer des névrites totalement réversibles avec l'arrêt de la supplémentation.
 
L''''épilepsie sensible au phosphate de pyridoxal''' est une maladie génétique à transmission autosomique dominante. Elle est causée par une ''déficience en PNPO'', qui touche la synthèse du phosphate de pyrixodal à partir des formes inactives de B6. Avec cette maladie, l'enzyme PNPO n'est pas synthétisée, ce qui fait que la vitamine B6 n'agit plus du tout dans le cerveau. Cela entraine une carence massive en B6 active dans le cerveau. En conséquence, la synthèse des neurotransmetteurneurotransmetteurs est perturbée et le métabolisme neuronal des acides aminés est perturbé. Le résultat est une encéphalopathie épileptique néonatale, qui survient dès les premières heures de vie du bébé atteint. Elle ne réagit pas aux traitements habituels et n'est soignée que lapar un traitement à base de phosphate de pyridoxine/pyridoxal. D'autres symptômes peuvent survenir, comme une hypotonie, des troubles respiratoires, des mouvements anormaux, etc.
 
Similaire à la maladie précédente, l''''épilepsie pyridoxine-dépendante''' est un ensemble de maladies génétiques caractérisées par une encéphalopathie néonatale similaire à la maladie précédente. Les crises épileptiques sont de type myocloniques, avec un tracé typique sur l'EEG. La seule différence est que la maladie est sensible à un traitement à base de pyridoxine, une forme inactive de la B6, là où la précédente a besoin de la forme active de la B6. L'identification de cette maladie est souvent difficile à faire et le diagnostic se fait après administration de vitamine B6 ou un diagnostic génétique. Elle se manifeste très tôt : dans les premiers jours ou mois de vie pour les formes précoceprécoces, vers 1 à 3 ans pour les formes tardives. Ce syndrome touche entre une naissance sur 500 000 et une naissance sur 400 000. Ses causes sont nombreuses et de nombreux mutations génétiques peuvent la causer. Dans les grandes lignes, il existe deux sous-syndromes principaux : une forme précoce qui apparait dans les premières heures de vie, et une forme tardive qui apparait vers 1 à 3 ans.
* La forme précoce exprime une épilepsie prénatale dès 20 semaines de gestation. L'épilepsie se manifeste rapidement et toutes les formes de crises épileptiques peuvent survenir : myoclonies, absences, crises toniques, toniques-cloniques. Elle est souvent secondée par de l'irritabilité et une réaction excessive aux stimuli, ainsi que par des malformations cérébrales diverses (hydrocéphalie, malformations du corps calleux, ...). On peut observer des troubles métaboliques généraux, des troubles respiratoires, et bien d'autres symptômes divers. Sans traitements, la maladie entraine un retard mental et divers déficits neurologique et développementaux. La forme précoce la plus fréquente est causée par une mutation qui perturbe la synthèse de l'antiquitine, une enzyme de la voie de dégradation de la lysine.
* Par contraste, la forme tardive apparait avant 3 ans et répond initialement aux médicaments anti-épileptiques, avant que ces traitements cessent de faire effet. L'épilepsie est isolée, avec peu d'autres symptômes neurologiques et une absence de malformations cérébrales.
===La vitamine B1===
 
La vitamine B1, aussi appelée thiamine, est une vitamine du fameux cycle de Krebs (une série de réactions chimiques qui fournit de l'énergie aux cellules vivantes). Une carence en vitamine B1 entraine une pénurie d'énergie et d'ATP dans les cellules, qui se mettent à dysfonctionner et parfois à mourir. Le système nerveux étant un tissu très gourmand d'un point de vue métabolique, toute carence en vitamine B1 retenti en premier lieu sur le fonctionnement cérébral. Autant dire qu'elle est extrêmement importante pour le système nerveux, des carences pouvant être tout aussi graves que les carences en vitamines B12 ou B6. La carence en thiamine cause un stress métabolique aux neurones, qui cause des dysfonctionnementdysfonctionnements divers des potentiels d'action, mais qui peut aussi entrainer souvent la mort du neurone par apoptose. De plus, la carence va aussi modifier la recapture du glutamate, entrainant l'apparition d'une excitotoxicité (le glutamate excite les neurones à mort). Beaucoup de neurones dysfonctionnent, quand ils ne meurent rapidement, ce qui cause l'apparition d'une maladie : l''''encéphalopathie de Wernicke'''.
 
Ses symptômes sont souvent assez clairs, 80% des cas manifestant la triade : défaut de coordination des mouvements (ataxie), paralysie des yeux (ophtalmoplégie) et confusion (delirium). D'autres symptômes peuvent se faire jour, comme une profonde amnésie, une perte de la mémoire à court-terme, une psychose, ou des troubles végétatifs. L'origine de ces symptômes est liéliée à diverses atteintes du thalamus, de l'hypothalamus et du tronc cérébral. Par exemple, la paralysie oculaire provient d'une atteinte des noyaux des nerfs crâniens oculomoteurs. L"amnésie est quant à elle liée à une atteinte des corps mamillaires de l'hypothalamus. Une carence prolongée en B1 s'observe surtout chez les alcooliques, l'alcool stoppant l'absorption intestinale de la B1.
 
Chez certains patients, l'encéphalopathie de Wernicke évolue vers des troubles cognitifs permanents. La démence qui en résulte est appelée le '''syndrome de Korsakoff''', du nom de son découvreur. Son symptôme principal est une amnésie assez particulière. Nous allons devoir parler rapidement de l'amnésie, chose qui sera détaillé dans le chapitre sur la mémoire. L'amnésie du syndrome de Krosakoff est une perte de la mémoire à court-terme, avec une incapacité à mémoriser de nouveaux souvenirs ou de nouvelles connaissances. Les savoirs et souvenirs déjà acquis sont relativement préservés, bien que quelques déficits peuvent se voir. L'amnésie porte donc essentiellement sur les acquisitions qui suivent le traumatisme, cette forme d'amnésie étant appelée amnésie antérograde. L'amnésie qui touche les souvenirs d'avant l'apparition du syndrome est appelée amnésie rétrograde. L'amnésie du syndrome de Korsakoff est essentiellement antérograde, bien qu'une faible amnésie rétrograde soit possible. Si amnésie rétrograde il y a, celle-ci ne touche généralement que les souvenirs et savoirs récents, qui datent de quelques mois, années ou décennies avant le syndrome. Outre l'amnésie, divers troubles cognitifs peuvent se manifester, que ce soit des troubles du langage (aphasie), des troubles de la reconnaissance des objets et de la catégorisation (agnosie) ou des troubles intellectuels.
Outre les vitamines, les mal-nommés « minéraux » sont d'une importance capitale pour le fonctionnement normal du cerveau. Les « minéraux » les plus importants sont de loin les ions Calcium, Potassium et Sodium, sans lesquels il ne peut y avoir de potentiels d'action. Leur rôle a déjà été abordé dans le chapitre sur potentiel d'action et nous n'en reparlerons pas ici. Les autres ions que nous allons aborder sont le magnésium, le cuivre, le fer et quelques autres. Vous remarquerez qu'il s'agit d'ions métalliques, à quelques exceptions près.
 
Tous les ions ont une concentration particulièrement bien régulée, le cerveau disposant de toute une machinerie chimique pour régler leur concentration. Il faut dire que ces ions deviennent toxiques quand ils sont en grandes quantités. C'est notamment le cas des ions métalliques, qui sont impliqués dans des réactions d’oxydoréduction qui créent des molécules « poisons » (des radicaux libres). En temps normal, les produits nocifs de ces réactions sont éliminés ou dégradés par la machinerie cellulaire du cerveau, mais ces processus sont dépassés quand la concentration en ions métalliquemétalliques devient trop importante. De même, une déficience est nuisible pour les neurones, ces ions servant dans de nombreuses réactions chimiques importantes pour le fonctionnement des neurones.
 
La concentration en ions du cerveau est sévèrement contrôlée par divers mécanismes, dans lesquels la barrière hémato-encéphalique joue un rôle crucial. Elle protège le cerveau des variations de concentration ionique du sang. Par exemple, prenons le cas où la concentration en sodium du sang augmente, suite à la consommation d'un aliment particulier, d'une réponse hormonale, ou d'un supplément alimentaire. Le cerveau ne va pas être impacté par cette variation, et en sera isolé : la concentration ionique intracérébrale restera la même. C'est grâce à la barrière hémato-encéphalique, qui isole le cerveau des vaisseaux sanguins. L'absorption d'ions dans le cerveau, ou leur excrétion, est réalisée par des canaux ioniques et/ou des transporteurs, qui se trouvent à la surface de la barrière hématoencéphalique. Elles vont se lier aux minéraux ou aux vitamines à absorber et vont les rapatrier dans les astrocytes pour l'absorption. Une partie des ions est perdue dans le liquide céphalorachidien, et est emportée avec lui lors de son excrétion dans le sang.
L'ion magnésium a aussi été vu dans le chapitre sur les récepteurs synaptiques et la plasticité synaptique. Nous avons vu que les récepteurs NMDA du glutamate sont bloqués par un ion magnésium, qui bouche le canal ionique. Du moins, c'est le cas tant que le potentiel du neurone reste inférieur à -60 mV. Si la tension dépasse ce seuil, l'ion Magnésium est éjecté et le canal ionique s'ouvre, excitant le neurone. On devine donc qu'un manque en magnésium se traduit par une hyper-excitabilité neuronale, alors qu'un excès de Magnésium entraine une hypo-excitabilité neuronale. Dans les deux cas, l'atteinte neuronale est diffuse, mais ciblée sur les neurones sensibles au glutamate.
* La déficience en magnésium entraine des symptômes neurologiques qui vont d'une simple asthénie et/ou une faiblesse musculaire, à des symptômes plus sérieux comme des convulsions et plus rarement un coma.
* Pour un excès en magnésium, les symptômes neurologiques sont frustres pour les faibles hypermagnésémies, mais bien plus lourds dans les cas graves. AÀ faible dose en excès, le magnésium entraine une simple léthargie et/ou asthénie. Pour un excès assez fort, elle surtout des symptômes neuromusculaires. Il a, à hautes doses, un effet sur la jonction neuromusculaire similaire à celui du curare. En clair, elle cause une décontraction musculaire, une diminution des réflexes, des paralysies (notamment respiratoires). Dans certains cas extrêmes, on observe une dilatation pupillaire liée à un blocage du système nerveux sympathique.
 
===Le cuivre===
Quoi qu’il en soit, le fer sanguin,lié à la transferrine finit naturellement par arriver au cerveau. Mais pour cela, il doit traverser la barrière hémato-encéphalique, qui régule son entrée dans le système nerveux. Le fer se détache de la transferrine et se fixe sur des transporteurs présents à la surface de la barrière hémato-encéphalique. Le fer traverse alors la barrière et se retrouve dans le cerveau (dans les astrocytes, puis dans les neurones). Précisons que le fer capté par ce transporteur est obligatoirement un ion <math>Fe^{2+}</math> et non les autres formes ioniques (<math>Fe^{3+}</math> ou <math>Fe^{+}</math>). Une fois entré dans le cerveau, le <math>Fe^{2+}</math> est immédiatement oxydé en <math>Fe^{3+}</math> par les astrocytes, avant de se lier à une transferrine intracérébrale. La transferrine se lie à divers récepteurs à la surface des oligodendrocytes et des neurones cérébraux : le fer se détache de la transferrine et rentre dans ces cellules. Le fer s'accumule préférentiellement dans les ganglions de la base et la substance noire (la ''substantia nigra pars compacta'', pour être précis).
 
Précisons que la transferrine cérébrale est plus efficace que la transferrine sanguine. Là où la transferrine sanguine est saturée à seulement 30% de sa capacité de transport maximale, la transferrine cérébrale atteint presque 100%. Il s'agit pourtant de la même molécule, mais les différencedifférences chimiques entre le sang et le tissu cérébral font que... Une conséquence est la transferrine ne peut pas servir de tampon en cas d'excès en fer cérébral, vu qu'elle est déjà chargée au maximum, ce qui rend les neurones très sensibles à une surcharge en fer.
 
Il arrive que le cerveau se retrouve soit en manque chronique de fer, soit qu'il est surchargé de fer au point où les teneurs atteintes sont toxiques. Les maladies responsables sont des maladies génétiques très rares, regroupées sous le nom de '''''Neurodegeneration with brain iron accumulation''''', abrévié NBIA. L'accumulation touche en priorité les ganglions de la base et le cervelet, à savoir les aires cérébrales les plus chargées en fer. Elle se traduit donc par une symptomatologie caractéristique d'une atteinte des ganglions de la base, à savoir un syndrome parkinsonien ou d'autres mouvements anormaux (chorée, dystonies), parfois couplés à un déclin intellectuel/cognitif. Les mécanismes de l'accumulation du fer dans le cerveau sont multiples et peuvent toucher des molécules très diverses. Les médecins ont identifié une petite dizaine de sous-types de NBIA, chacun se distinguant des autres par le gène muté et les mécanismemécanismes de l'accumulation du fer.
 
{|class="wikitable"
: Pour ceux qui veulent en savoir plus sur les NBIA, je conseille la lecture de ce lien : [https://www.nbiadisorders.org/about-nbia/overview-of-nbia-disorders NBIA disorders association]
 
Mais il existe des maladies qui sont causées non parpas par une accumulation de Fer dans le cerveau, mais par des dysfonctionnementdysfonctionnements plus compliqués à expliquer. L''''ataxie de Friedreich''' est une de ces maladies. Cette maladie est causée par une mutation qui perturbe la fabrication d'une enzyme, la frataxine. Le métabolisme intracellulaire du Fer est perturbé, et plus précisément le métabolisme mitochondrial. Le résultat est que les cellules des tissus fortement consommateurs d'ATP meurent rapidement, les neurones ne faisant pas exception. De plus, la gaine de myéline des neurones se dégrade et finit par disparaitre, sans être remplacée. La maladie démarre aux alentours de l'adolescence et se manifeste principalement par des problèmes d'équilibre et de coordination des mouvements (une ataxie, qui donne son nom à la maladie). Par la suite, on observe des troubles neurologiques moteurs et sensoriels, assez divers, d'apparition progressive. Certains sont causés par une atteinte du cervelet (troubles de l’articulation, des mouvements oculaires), par une atteinte faisceau pyramidal (paralysie, faiblesse musculaire), et/ou par une atteinte de la moelle épinière. Typiquement, le patient a du mal à marcher, perd facilement l'équilibre, a du mal à coordonner ses mouvements. Puis, le patient perd progressivement l'usage de ses bras et de ses jambes, il ressent une faiblesse musculaire envahissante. Parfois, il a du mal à articuler, ses mouvements oculaires sont erratiques. Quand sa moelle épinière et atteinte, sa sensibilité corporelle se dégrade, son sens du toucher et sa proprioception disparaissent. Beaucoup plus rarement, les nerfs optiques et auditifs se démyélinisent, causant perte d'acuité visuelle ou auditive, cécité, surdité, etc. Précisons pour finir que la maladie ne touche pas que le cerveau, mais cause aussi des atteintes cardiaques (très fréquentes), une scoliose ou d'autres déformations osseuses, et parfois un diabète (10-20% des patients).
 
Pour ceux qui veulent en savoir plus sur le métabolisme cérébral du fer, je conseille la lecture de cet article scientifique, en libre accès sur pubmed :
242

modifications