297
modifications
m (→Pour les tests : j'enregistre aussi ma version et je regarde ce que tu as corrigé) |
m (→Pour les tests : Merci) |
||
== Pour les tests ==
{{Exemple|Exemple de transformations géométriques|Problème de géométrie|Dans le repère des
1) Calculer l'affixe du point <math>C</math> tel que <math>C'</math> soit l'image de <math>C</math><br />par la rotation de centre <math>O</math> (d'affixe <math>z_O = 0</math>) et d'angle <math>\frac{\pi}{2}</math>
On a <math>z_C - 0 = \exp{\frac{i\pi}{2}}(z_C' - 0)</math>, d'où <math>z_C = 2i \times \exp{\frac{i\pi}{2}} = 2i \times (\cos\left(\frac{\pi}{2}\right) + i \sin\left(\frac{\pi}{2}\right)) = -2 </math>.<br /><br />
2) Représenter les points dans le plan des complexes dont la base
Faire le dessin.<br /><br />
3) Soit le triangle <math>(ABC)</math>
a) Calculer l'angle
On fait <math>\frac{z_A - z_C}{z_B - z_C} = \frac{1 + i\sqrt{3} + 2}{1 - i\sqrt{3} + 2} = \frac{(3 + i\sqrt{3})(3 + i\sqrt{3})}{(3 - i\sqrt{3})(3 + i\sqrt{3})} = \frac{9 + 6i\sqrt{3} - 3}{9 + 3} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = \exp{\frac{i\pi}{3}}</math><br /><br />
b) Déterminer la nature du triangle <math>(ABC)</math>
L'angle
c) Déterminer le centre et le rayon du cercle <math>\Gamma</math> circonscrit au triangle.
Le triangle étant équilatéral, le centre du cercle circonscrit est le centre de gravité<br />(on rappelle que les droites remarquables (médianes, médiatrices...) sont confondues).<br />Soit <math>I</math> le milieu de <math>[AB]</math> (centre de gravité de deux points aux coefficients égaux).<br />On a <math>z_I = \overrightarrow{OI} = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OA}) = \frac{1}{2}(z_B + z_A) = \frac{1}{2}(1 - i\sqrt{3} + 1 + i\sqrt{3}) = 1</math><br />L'affixe du centre de gravité <math>G</math> peut être
4) Soit <math>r</math> la rotation de centre <math>B</math> et d'angle <math>\frac{\pi}{3}</math>.
|
modifications