« Cosmologie/Les processus de baryogenèse et nucléosynthèse » : différence entre les versions

m
Au tout début de sa formation, l'univers était clairement chaud et dense : les températures quelques microsecondes après le big-bang dépassaient le million voire le milliard de degrés. L'univers était en première approximation un gaz parfait de particules très différentes : neutrons, protons, neutrinos, électrons, photons, quarks, et autres. Au tout début de l'univers, les températures étaient tellement fortes que toutes les populations de particules réagissaient entre elles : à peu-près n'importe quelle particule pouvait se transformer en une autre, homogénéisant les températures. Le mélange était tel que l'on pouvait définir une température moyenne valable pour tous les types de particules : les neutrons avaient une température moyenne similaire à celle des protons, elle-même identiques à celle des quarks, etc. On dit que l'équilibre thermique est respecté. Les différences d'équation d'état étaient ainsi mineures, et étaient compensées par les nombreuses interactions entre particules.
 
==La condensation des baryonsbaryogenèse==
 
Au tout début, on pouvait voir l'univers comme un mélange de plusieurs gaz composés de particules élémentaires. Du temps des fortes températures, quelques micro-secondes avant le big-bang, les particules composites ne pouvaient pas se former à partir de quarks : la température trop intense faisait que les particules composites étaient brisées par le chaos ambiant quelques microsecondes après leur formation. C'était essentiellement les photons et neutrinos qui réagissaient avec la matière et brisaient les structures ainsi formées. Il a fallu attendre que la température du rayonnement baisse pour que les quarks puissent s'assembler en protons et neutrons sans interagir avec un photon qui passe sur le chemin. Ce processus de formation des protons et neutrons s'appelle la '''baryogenèse''', ce qui signifie formation des baryons (les protons et neutrons sont des exemples de baryons, d'où le nom).
 
===Le calcul du rapport protons/neutrons===
 
La théorie du big-bang nous permet de déterminer comment s'est produit ce processus. Une réussite de la théorie tient dans le fait qu'elle prédit le rapport entre le nombre de protons et de neutrons dans l’univers. Celui-ci peut se calculer à partir du raisonnement suivant. Avant que les noyaux se forment, les protons et neutrons étaient libres et formaient un plasma de nucléons. La température de ce plasma a diminué progressivement avec l'expansion. Peu avant la formation des noyaux, la température était faible comparé à la masse des protons et neutrons (<math>Kb T << M_p c^2</math>). Dans ces conditions, le gaz peut être décrit par ce qu'on appelle la ''distribution de Maxwell-Boltzmann''. Celle-ci dit que la quantité de particules d'énergie <math>m</math> par unité de volume est de :
39 555

modifications