43 223
modifications
mAucun résumé des modifications |
|||
==Registres à décalage à rétroaction==
La première solution consiste à utiliser des ''registres à décalages à rétroaction'', aussi appelés
[[File:LFSR-F4.GIF|centre|Exemple avec un registre à rétroaction linéaire de 4 bits.]]
La période N dépend fortement de la fonction utilisée pour calculer le bit de sortie, des bits choisis, etc. Dans le meilleur des cas, le registre à décalage à rétroaction passera par presque toutes les valeurs que le registre peut prendre. Si je dis presque toutes, c'est simplement qu'une valeur n'est pas possible : suivant le registre, le zéro ou sa valeur maximale sont interdits. Si un registre à rétroaction linéaire passe par zéro (ou sa valeur maximale), il y reste bloqué définitivement. La raison à cela est simple : un XOR sur des
===Combinaisons de LSFR===
Problème : ces circuits ne sont pas totalement fiables : ils peuvent produire plus de bits à 0 que de bits à 1, et des corrections sont nécessaires pour éviter cela. Pour cela, ces circuits de production de nombres aléatoires sont souvent couplés à des circuits qui corrigent le flux de bits accumulé dans le registre pour l'aléatoiriser. Une solution consiste à simplement prendre plusieurs de ces circuits, et d'appliquer un XOR sur les bits fournis par ces circuits : on obtient alors un bit un peu moins biaisé, qu'on peut envoyer dans notre registre à décalage. Pratiquement, des circuits avec trop de bits en entrées sont difficilement concevables.
Pour rendre le tout encore plus aléatoire, il est possible de cadencer nos registres à décalage à rétroaction linéaire à des fréquences différentes. Ainsi, le résultat fourni par notre circuit combinatoire est encore plus aléatoire. Cette technique est utilisée dans les générateurs ''stop-and-go'',
==Vrai aléatoire==
La première technique utilise un simple compteur qui s'incrémente à chaque cycle d'horloge. Si on a besoin d'un nombre aléatoire, il suffit d'aller lire le contenu de ce registre, et de l'utiliser directement comme résultat. Si suffisamment de temps s'écoule entre deux demandes, et que le temps entre deux demandes est irrégulier, le résultat semblera bien aléatoire.
Autre solution, un peu plus fiable : utiliser ce qu'on appelle la '''dérive de l'horloge'''. Il faut savoir qu'un signal d'horloge n'est jamais vraiment très précis. Une horloge censée tourner à 1 Ghz ne tournera pas en permanence à 1Ghz exactement, mais verra sa fréquence varier de quelques Hz ou Khz de manière irrégulière. Ces variations peuvent venir de variations aléatoires de température, des variations de tension, des perturbations électromagnétiques, ou à des phénomènes assez compliqués qui peuvent se produire dans tout circuit électrique (comme le shot noise). L'idée consiste à prendre au moins deux horloges et d'utiliser la dérive des horloges pour les désynchroniser. On peut par exemple prendre deux horloges : une horloge lente et une horloge rapide, dont la fréquence est un multiple de l'autre. Par exemple, on peut choisir une fréquence de 1 Mhz et une autre de 100 Hz : la fréquence la plus grande est égale à 10000 fois l'autre. La dérive d'horloge fera alors son œuvre : les deux horloges se désynchroniseront en permanence, et cette désynchronisation peut être utilisée pour produire des nombres aléatoires. Par exemple, on peut compter le nombre de cycles d'horloge produit par l'horloge rapide durant une période de l'horloge lente. Si ce nombre est pair, on produit un bit aléatoire qui vaut 1 sur la sortie du circuit. Pour information, c'est exactement cette technique qui était utilisée dans l'''Intel 82802 Firmware Hub''.
===Aléatoire généré par la tension d'alimentation===
|