« Le noyau atomique/Introduction historique : la découverte du noyau atomique » : différence entre les versions

Contenu supprimé Contenu ajouté
Ligne 43 :
Rutherford établi alors une formule qui relie le pourcentage de particules qui rebondissent avec un angle de rebond <math>\omega</math>. Nous la démontrerons dans le chapitre sur les diffusions nucléaires et l'étudierons plus en détail. Pour le moment, contentons-nous de dire qu'elle suppose ceci : la particule alpha ne rebondit pas vraiment sur le noyau, mais est en réalité repoussée par répulsion électrostatique. Cette répulsion dévie la particule et peut même la renvoyer si elle arrive avec la bonne trajectoire. La formule de Rutherford collait parfaitement avec les résultats de ses assistants, sauf pour des valeurs d'angle particulièrement élevées. Ils ne le savaient pas à l'époque, mais ces déviations entre formule de Rutherford et résultats permettent d'étudier la structure interne du noyau. Mais revenons à nos moutons... Rutherford utilisa cette formule pour calculer la taille du noyau et l'appliqua sur les expériences de ses assistants. Il pu ainsi déterminer la taille du noyau atomique, qui se révéla extrêmement petite. Le noyau ne fait que 1% du volume de l'atome, alors qu'il concentre la majorité de sa masse. Environ 99% de l'atome est intégralement composé de vide, électrons et noyau compris.
 
==La découverte du proton et du neutron==
 
Après la découverte du noyau, les physiciens ont établi que le noyau était chargé positivement et de petite taille. Sa charge est de plus égale à la charge des électrons, mais de signe contraire. Certains scientifiques supposèrent que le noyau était lui-même composé de particules élémentaires, chargées positivement et de même masse que le noyau d'hydrogène. Parmi ces raisons, on peut citer la règle de Prout, mais celle-ci est loin d'être la seule. Antonius van den Broek a supposé que la place de chaque élément dans la classification périodique est égale à la charge de son noyau, ce qui est confirmé par les expériences d'Henry Moseley en 1913.
 
===La découverte du proton===
[[File:Rutherford atomic planetary model.svg|vignette|Modèle atomique planétaire de Rutherford.]]
 
En 1919, Rutherford fi une nouvelle expérience qui lui permis de découvrir le premier composant du noyau. Il voulait vérifier les résultats d'une expérience de Mardsen, qui avait observé l'émission d'hydrogène lors de la désintégration du Radium. Mardsen avait observé l'émission de particules alpha d'un morceau de radon dans une chambre remplie d'Hydrogène gazeux. Les particules alpha émises entraient en collision avec des atomes d'Hydrogène, les envoyant sur un écran scintillant (comme dans l'expérience de Rutherford, sauf que l'écran était sensible aux atomes d'Hydrogène). Il observait bien des points scintillant quand la chambre était remplie d'Hydrogène, preuve que le dispositif marchait parfaitement. Mais, quand il vida la chambre et la rempli d'air, il vit que des points scintillants apparaissaient toujours, bien que moins souvent. Il en déduit, on sait aujourd'hui à tord, que le radon émettait de l'Hydrogène.

Pour en avoir le cœur net, Rutherford répliqua l'expérience en remplaçant l'Hydrogène par du dioxyde de Carbone, de l'Oxygène et de l'air sec. Seul l'air sec permettait d'observer ce phénomène, ce qui fit penser à Rutherford qu'il devait être lié à un gaz présent dans l'air qui n'est ni CO2 ni O2 : l'Azote. Pour le vérifier, Ruthetford bombarda des noyaux d'Azote avec des particules alpha très énergétiques. Il observa alors les scintillations, prouvant son hypothèse. Pour résumer, Rutherford pensait que les collisions entre particules alpha et Azote arrachaient des noyaux d'Hydrogène à l'Azote. Ce fût confirmé par des expériences dans des chambres à brouillards, qui permettent de voir les trajectoires des particules, qui donnaient des résultats compatibles avec l'hypothèse de Rutherford. Cette expérience montra que les noyaux peuvent se casser, suite à un choc ou spontanément, en émettant un noyau d'Hydrogène.
 
===Les modèles du noyau avec électrons intranucléaires===
 
[[File:Rutherford atomic planetary model.svg|vignette|Modèle atomique planétaire de Rutherford.]]
 
Preuve était faite que les noyaux contiennent des noyaux d'Hydrogène, qui sont composés d'une unique particule encore inconnue à l'époque : le proton. Les protons sont des particules chargées électriquement. Leur charge est positive, de même valeur absolue que celle de l’électron. Il a une masse de <math>1,67262 \times 10^{-27}</math> kg, ce qui est presque égal à 1836,15 fois celle de l’électron. La masse du noyau semble approximativement proportionnelle à la masse du proton. L'expérience de Rutherford montrait que le noyau contenait des protons et il était naturel de supposer qu'il était composé uniquement de protons. C'est d'ailleurs à la suite de ces découvertes que Rutherford proposa, en 1920, un modèle de l'atome similaire au modèle de Nagaoka (qu'il cite dans son article), mais sans ses défauts.
 
Mais cette hypothèse a un défaut : elle ne rend pas compte de la charge du noyau. En effet, si on suppose que le noyau atomique est composé de protons, alors la charge calculée ne correspond pas. Si on mesure la masse en unité d'atomes d'hydrogène et la charge électrique, il y a un facteur 2 entre ces deux valeurs : il doit y avoir deux fois plus de protons que d’électrons du point de vue de la masse, mais autant de protons que d’électrons du point de vue de la charge. Prenons l'exemple de l'atome de carbone 12, qui contient 6 électrons : son noyau a une charge de 6 (ce qui correspond à 6 protons), mais sa masse est de 12 fois celle du proton. Et ce problème se rencontre pour tous les noyaux, excepté pour l'hydrogène (et plus précisément pour son isotope appelé le protium). Pour résoudre ce problème, les physiciens ont postulé que le noyau contenait des électrons qui compensaient la charge de la moitié des protons. Cette théorie des électrons nucléaires avait cependant de nombreux problèmes techniques et expliquait mal certaines données expérimentales.
 
==La découverte du neutron==
 
Il fallut la découverte du neutron en 1932 par Chadwick pour changer la donne. Les scientifiques ont rapidement compris que le noyau contenait à la fois des protons et des neutrons, suite à diverses observations qui montrèrent que le neutron est un constituant du noyau. Le neutron a une charge électrique nulle, contrairement au proton et à l’électron. Sa masse est très légèrement supérieure à celle du proton (un neutron est 1,0014 fois plus lourd que le proton) et vaut <math>1,67493 \times 10^{-27}</math> kg.