« Le noyau atomique/Introduction historique : la découverte du noyau atomique » : différence entre les versions

Contenu supprimé Contenu ajouté
Ligne 11 :
* Un même élément chimique correspond à plusieurs formes de Z identique, mais de A très différents. Ces formes alternatives d'un même élément chimique, qui sont plus lourdes ou plus légères que l’élément normal, sont appelées des isotopes.
 
Par la suite, on découvrit le phénomène de radioactivité alpha, où un atome émet spontanément une particule dite alpha. Cette particule alpha a un nombre de masse égal à 4, soit quatre atomes d'hydrogènes et un Z égal à 2. Il s'agit donc d'Hélium, et plus précisément d'un de ses isotopes, nommé Hélium-4 (la forme la plus courante de l'Hélium). En 1911, le physicien Rutherford supposa que tous les atomes sont composés de particules alpha, donc de noyaux d'Hélium-4. La supposition de Rutherford permettait d'expliquer le fait que <math>A = 2 \cdot Z</math> pour tous les atomes, les particules alpha comprises. Mais elle collait mal avec deux observations. Déjà, la moitié des atomes ont un Z impair, ce qui ne colle pas avec de l'Hélium ayant un Z pair. Ensuite, certains atomes lourds ne respectent pas la formule <math>A = 2 \cdot Z</math> et ont un nombre de masse légèrement plus grand que 2 Z. Cet excès de A ne colle pas avec un atome composé de particules alpha et encore moins avec un atome composé d'hydrogène. On pourrait cependant pu sauver l'hypothèse en remplaçant les particules alpha par le noyau d'hydrogène pour qui <math>Z=1</math>, comme de nombreux chimistes l'avaient pensé auparavant, mais cela n'expliquait pas l'existence des isotopes ou les atomes avec un <math>A > 2 \cdot Z</math>.
 
==Le modèle de Thomson==