« Précis d'épistémologie/La modélisation du corps savant » : différence entre les versions

Contenu supprimé Contenu ajouté
Instinct, apprentissage et mémoire
Ligne 202 :
Pour qu'il y ait mémorisation il faut un matériau plastique, c'est à dire capable de conserver des traces de son expérience (plastique s'oppose ici à élastique : un matériau élastique ne conserve pas de traces des déformations qu'il subit). Il semble que la plasticité des neurones est surtout celles de leurs synapses. L'expérience de transmission des signaux peut renforcer ou affaiblir une synapse (Kandel 1999). Elle peut également conduire à la formation d'autres synapses voisines qui connectent les mêmes neurones. De cette façon l'expérience des neurones modifie leur connectivité. De nouveaux réseaux peuvent être formés et de nouvelles fonctionnalités peuvent apparaître. Dans le même temps de nombreux neurones disparaissent, vraisemblablement parce qu'ils n'ont pas fait les preuves de leur utilité, parce que leurs synapses n'ont pas été renforcées par l'expérience.
 
Donald Hebb a proposé une règle simple qui explique de nombreux apprentissages neuronaux : deux neurones connectés renforcent leur connexion lorsqu'ils sont excités ensemble. C'est une sorte de processus de renforcement par la réussite : lorsqu'un neurone A transmet un signal d'excitation à un autre neurone B, il n'est pas sûr de réussir. L'excitation de A à elle-seule n'est pas forcément suffisante pour déclencher l'excitation de B. Souvent il faut plusieurs signaux d'excitation en provenance d'autres neurones que A pour que B soit excité. La règle de Hebb énonce qu'une synapse d'un neurone excitateur est récompensée par la réussite. Elle est renforcée lorsque le neurone visé est vraiment excité.
 
==== Le développement des instincts ====
Ligne 208 :
Pour qu'il y ait un savoir-faire il faut qu'il y ait un réseau de neurones fonctionnel, c'est à dire capable de se servir des signaux de la perception pour donner les signaux d'action appropriés. Le savoir-faire instinctif n'est pas appris, mais il est tout de même acquis, au sens où il apparaît au cours du développement naturel de l'individu. Comment les gènes peuvent-ils contrôler le développement d'un réseau de neurones fonctionnel ?
 
Le mystère du contrôle génétique du développement de l'organisme et de son système nerveux est partiellement élucidé : les gènes contrôlent le métabolisme (la synthèse et la dégradation des molécules de l'organisme) par l'intermédiaire de la synthèse des ARN et des protéines. La différenciation cellulaire dépend de l'activation de gènes particuliers qui synthétisent des protéines spécifiques au type cellulaire. Les gènes contrôlent la différenciation cellulaire en contrôlant la synthèse des ARN ou des protéines qui activent ou inhibent des gènes. Les propriétés des cellules et leurs interactions dépendent de leur type cellulaire. Les gènes peuvent ainsi contrôler la prolifération, la différenciation et la migration de toutes les cellules de l'organisme lors de son développement (Wolpert, Tickle & Martinez 2015). Pour les cellules nerveuses, ils peuvent aussi déterminer la migration des terminaisons de leurs axones et construire ainsi des réseaux de neurones. Mais ils ne contrôlent ainsi que le plan d'ensemble du système. La structure fine des connexions entre neurones est épigénétique, elle dépend de l'expérience. Là encore les gènes peuvent exercer une influence sur le développement, parce que la plasticité des synapses, la façon dont elles réagissent aux divers signaux qu'elles reçoivent, peut varier en fonction du type cellulaire.
 
==== La mémoire procédurale ====
 
La mémoire procédurale est la mémoire d'un savoir-faire appris. L'apprentissage d'un savoir-faire consiste à construire un réseau de neurones fonctionnel. Tant que le réseau est conservé, et qu'il reste fonctionnel, le savoir-faire est conservé. La mémoire procédurale est donc la conservation des réseaux de neurones fonctionnels que nous avons construits par un apprentissage.
 
==== Un modèle neuronal pour la mémoire épisodique : les ZCD ====
Ligne 218 :
La mémoire épisodique est la mémoire des souvenirs. Quand on se souvient on simule par l'imagination une expérience qu'on a déjà vécue. Comment un réseau de neurones peut-il accomplir une telle performance, enregistrer une expérience, la conserver et la reproduire par l'imagination ?
 
Une zone de convergence-divergence (ZCD) est un réseau de neurones, qui reçoit des projections convergentes en provenance des sites dont l'activité doit être mémorisée, et qui renvoie des projections divergentes vers ces mêmes sites (Damasio 1989, 2009). Lorsqu'une expérience est mémorisée, les signaux qui convergent sur la ZCD y excitent des neurones qui renforcent alors leurs connexions réciproques, en suivant la règle de Hebb, et forment ainsi un réseau auto-excitateur. Il suffit alors d'exciter à nouveau le réseau ainsi formé pour reproduire la combinaison de signaux initialement reçus. Dans un réseau auto-excitateur l'excitation d'une partie se propage à toutes les autres. De même un fragment de souvenir suffit pour réveiller l'intégralité d'une expérience mémorisée (Proust 1927). Une ZCD peut être ainsi un lieu d'enregistrement et de reproduction des souvenirs.
 
En plus des voies convergentes-divergentes, une ZCD peut être connectée au reste du cerveau de toutes les façons imaginables, par des signaux en entrée qui l'activent ou l'inhibent, et des signaux en sortie avec lesquels elle fait son effet sur le reste du système. En particulier les ZCD peuvent s'organiser en un système et former une sorte d'arborescence. Une ZCD peut recruter en entrée des voies convergentes issues de nombreuses autres ZCD. Elle peut ainsi faire une synthèse des capacités de détection et de production de toutes les ZCD ainsi recrutées.
 
Pour faire un modèle du système des ZCD, on distingue dans le système nerveux une partie périphérique et une partie centrale. La périphérie réunit les régions dédiées à la perception, à l'émotion et à l'action. L'arborescence des ZCD est organisée d'une façon hiérarchique, de la périphérie vers le centre. Les ZCD les plus périphériques ont des voies convergente issues directement de la périphérie. On se rapproche du centre en remontant les arborescences de ZCD. On peut songer à des racines qui plongent dans la terre, la périphérie, et qui se rapprochent de la base du tronc, le centre. Mais dans le cerveau, il y a de très nombreux centres. Les ZCD les plus centrales ont des voies convergentes issues d'autres ZCD, et ne sont pas recrutées par des ZCD plus centrales. Le souvenir d'un épisode de notre vie pourrait être conservé par une telle ZCD centrale. Lorsque nous revivons les perceptions, les émotions et les actions d'une expérience passée, l'excitation de cette ZCD centrale activerait toutes les ZCD subordonnées, jusqu'aux aires périphériques, et reconstitueraitsimulerait ainsi l'expérience préalablement vécue.