« Tribologie/Lubrifiants/Lubrifiants solides et vernis » : différence entre les versions

Contenu supprimé Contenu ajouté
Cjp24 (discussion | contributions)
m Wikifier
retour sur quelques modifications peu judicieuses
Ligne 46 :
Le graphite est la plus stable des quatre variétés allotropiques du carbone. À l'état naturel, il se présente sous la forme de masses noires, douces ou même graisseuses au toucher, et qui noircissent les doigts. On le rencontre dans les roches métamorphiques comme les schistes et sous forme de petits cristaux dans d'autres minéraux comme les marbres. Il est usuellement commercialisé sous forme de paillettes contenant entre 90 et 95 % de carbone pur.
 
La densité du graphite est 2,25. Il est insoluble dans les solvants usuels, conducteur de la chaleur et de l'électricité, ce qui l'apparente aux métaux, dont il se rapproche aussi par l'« éclat métallique ». Son point de fusion est très élevé (3 .550 °C) et il fait preuve d'une grande neutralité chimique sauf avec les oxydants. Sa structure est un empilage de plaques parallèles formées d'hexagones réguliers et pouvant glisser sous un effort très faible. Ces plaques, liées par des forces de van der Waals, sont distantes de 0,335 nm et elles peuvent laisser pénétrer entre elles des ions ou des molécules formant des composés d'intercalation appelés « lamellars ».
 
Le graphite artificiel, obtenu à partir du pétrole, est beaucoup plus pur que le graphite naturel et communément constitué de 99,9 % de carbone. On s'en sert pour fabriquer des électrodes pour les piles électriques ou la métallurgie, des balais pour les moteurs électriques (charbons), des matériaux réfractaires, etc. Sous forme de fibres, il est largement utilisé pour la fabrication de matériaux composites.
Ligne 63 :
=== Bisulfure de molybdène ===
 
Ce produit de densité 4,8, de formule MoS<sub>2</sub>, résiste à la plupart des solvants et produits chimiques mais pas au chlore ni aux bases fortes, ni aux oxydants, ni à l'air au-dessus de 450 °C. On l'emploie de -180 °C à + 300 °C dans l'air, jusqu'à 650 °C en atmosphère neutre et 1 .100 °C sous vide (lubrification des parties tournantes des tubes à rayons X). En cas d'oxydation, il se forme de l'acide sulfurique H<sub>2</sub>SO<sub>4</sub> qui corrode les pièces, tandis que leur coefficient de frottement augmente.
 
Le bisulfure de molybdène est meilleur que le graphite, mais plus cher : il présente un facteur de frottement moins élevé sur l'acier, adhère davantage aux surfaces et surtout, il peut frotter dans le vide et les milieux anhydres. Il est bien moins sensible aux effets d'adsorption, mais son facteur de frottement augmente en présence d'humidité, contrairement au graphite. Il croît avec la vitesse de glissement et décroît si la pression augmente.
 
Ce produit a une structure en lamelles qui comportecomportent une couche d'atomes de molybdène entre deux couches d'atomes de soufre (on en compte 1 .640 par micromètre d'épaisseur). Ces lamelles ont peu d'affinité entre elles, d'où le clivage facile et la faible résistance au cisaillement des films, mais elles présentent une affinité pour les métaux bien supérieure à celle du graphite. Au contraire de ce dernier, le bisulfure de molybdène ne provoque aucune surépaisseur : ses lamelles n'ont pas tendance à s'empiler, elles sont par ailleurs assez dures pour pénétrer la structure du métal.
 
La grande affinité du bisulfure de molybdène pour les surfaces métalliques rend son incorporation possible par frottement à sec ou par projection dans un liquide volatil, le métal devant être soigneusement nettoyé. L'adsorption nécessite toutefois une grande énergie, elle n'est effective que par une pression d'au moins 15 bar, assurée par friction à la main ou dans certains cas dès la mise en service. On suppose que cette pression est nécessaire pour chasser les gaz adsorbés, d'ailleurs la durée de vie des films est triplée dans l'argon, gaz qui est bien moins adsorbé que l'oxygène de l'air.
Ligne 107 :
* nitrure de bore BN : il présente un coefficient de frottement élevé de 0,35 à 0,4 mais on peut l'utiliser jusqu'à 980 °C dans l'air et 1 650 °C dans le vide. On fabrique des roulements à billes en nitrure de bore fritté.
* phtalocyanine : utilisable de 30 °C à 500 °C, et même jusqu'à 650, voire 800 °C, si la quantité évacuée par sublimation est continuellement remplacée par entraînement dans un courant d'azote. On peut l'associer au graphite, à l'oxyde de plomb.
* oxyde de bore B<sub>2</sub>O<sub>3</sub> : à l'état solide, il sépare les matériaux à lubrifier, à chaud il s'amollit en agissant comme un lubrifiant classique avec de bonnes propriétés en graissage limite jusque vers 1 .100 °C. Son utilisation est possible en combinaison avec du graphite ou du sulfure de plomb.
* le verre est utilisé comme lubrifiant vers 1 .000 °C pour certaines opérations de travail des métaux.
 
Les ''Sermalubes'' constituent la vaste gamme de produits de la société Sermetel pour le frottement à température élevée. Dans des liants inorganiques céramisants entre 300 et 400 °C, on trouve des produits divers : graphite, oxyde de plomb, bisulfure de molybdène, PTFE, etc.
Ligne 159 :
La quasi-totalité des lubrifiants solides utilisés sont le bisulfure de molybdène, le PTFE, le graphite, le fluorure de graphite, mais on trouve aussi du talc et du mica. L'addition de trioxyde d'antimoine Sb<sub>2</sub>O<sub>3</sub> permet de réduire considérablement les risques de corrosion tout en améliorant le comportement du feuil à base de MoS<sub>2</sub>.
 
Les émaux de frottement, utilisés jusqu'à 1 .000 °C, renferment des fluorures de calcium ou de baryum, ou encore de l'oxyde de plomb, ...
 
Depuis peu, on utilise aussi des vernis à inclusion d'huiles. Ces dernières ne sont pas dissoutes mais dispersées dans des liants du type résines époxyde à raison de 3 à 7 % (10 % est un maximum). Le frottement est bien meilleur qu'avec des lubrifiants solides et cette technique constitue un progrès considérable.
Ligne 165 :
=== Applications ===
 
Elles sont très diverses : axes de rotors d'hélicoptères, boulonnerie aéronautique en titane, jupes de pistons de moteurs, ceintures à enrouleurs, assemblages silentblocSilentbloc, arbre primaire de boîte de vitesses, pivots, ressorts[[ressort]]s, charnières, noyaux plongeurs d'électroaimants, gâchettes de fusils, arbres cannelés, cames, rotules, engrenages, filage et calibrage à froid de profilés d'acier, formage du titane.
 
On les utilise aussi en présence de radiations ionisantes dans l'industrie nucléaire : vis de commande, boulons, ... dans le vide spatial, en présence de vibrations : plaques de dilatation, plaquettes de freins, ... dans le cas de températures extrêmes : chaînes de convoyeurs, ... en ambiance poussiéreuse ...
Ligne 178 :
Les bases théoriques des phénomènes décrits ci-dessous se trouvent dans le chapitre '''[[Tribologie/Genèse des frottements|Tribologie - Genèse des frottements]]'''.
 
Les études des structures lamellaires du graphite et du bisulfure de molybdène confirment que le facteur de frottement varie de façon périodique avec leur inclinaison relative. Dans le cas de réseaux cubiques, le plus faible frottement a lieu lorsque le décalage angulaire est de 45 °C. Pour le graphite, dont la structure est hexagonale, le facteur de frottement passe par un maximum tous les 60 °C, ce qui est conforme à l'intuition.
 
Jean-Michel Martin et son équipe de l'École Centrale de Lyon ont montré que lors du glissement, les feuillets de bisulfure de molybdène subissaient une double rotation par rapport à la direction du mouvement et par rapport aux autres feuillets, pour arriver à une position d'incommensurabilité. Ils ont découvert également que le dithiocarbamate de molybdène largement utilisé comme additif des huiles au Japon et aux États-Unis avait la propriété de former à la surface des pièces, sous l'effet du frottement, de petits feuillets de bisulfure de molybdène formés d'une seule couche de molécules. Outre leurs diverses actions protectrices, ces feuillets permettent d'abaisser le frottement jusqu'à des valeurs de l'ordre de 0,05.