« Programmation Python/Threads » : différence entre les versions

Contenu supprimé Contenu ajouté
Tavernier (discussion | contributions)
pause
Tavernier (discussion | contributions)
adaptation en wikisyntaxe, typo, retouches
Ligne 378 :
 
=== Protocole de communication ===
 
{{todo|pause ici}}
 
Il va de soi que le protocole décrit ci-après est tout à fait arbitraire. Il serait parfaitement possible de choisir d'autres conventions complètement différentes. Vous pouvez bien évidemment critiquer les choix effectués, et vous souhaiterez peut-être même les remplacer par d'autres, plus efficients ou plus simples.
 
Vous savez déjà que les messages échangés sont de simples chaînes de caractères. Prévoyant que certains de ces messages devront transmettre plusieurs informations à la fois, nous avons décidé que chacun d'eux pourrait comporter plusieurs champs, que nous séparerons à l'aide de virgules. Lors de la réception de l'un quelconque de ces messages, nous pourrons alors aisément récupérer tous ses composants dans une liste, à l'aide de la méthode intégrée split().
Vous savez déjà que les messages échangés sont de simples chaînes de caractères. Prévoyant que certains de ces messages devront transmettre plusieurs informations à la fois, nous avons décidé que chacun d'eux pourrait comporter plusieurs champs, que nous séparerons à l'aide de virgules. Lors de la réception de l'un quelconque de ces messages, nous pourrons alors aisément récupérer tous ses composants dans une liste, à l'aide de la méthode intégrée <code>split()</code>.
 
Voici un exemple de dialogue type, tel qu'il peut être suivi du côté d'un client. Les messages entre astérisques sont ceux qui sont reçus du serveur ; les autres sont ceux qui sont émis par le client lui-même :
 
{{todo|num à droite}}
 
<pre>
1.*serveur OK*
2.client OK
Ligne 401 ⟶ 405 :
16.*départ_de,Thread-2*
17.*nouveau_canon,Thread-5,502,276,-1,dark green*
</pre>
 
Lorsqu'un nouveau client démarre, il envoie une requête de connexion au serveur, lequel lui expédie en retour le message : « serveur OK ». À la réception de ce dernier, le client répond alors en envoyant lui-même : « client OK ». Ce premier échange de politesses n'est pas absolument indispensable, mais il permet de vérifier que la communication passe bien dans les deux sens. Étant donc averti que le client est prêt à travailler, le serveur lui expédie alors une description des canons déjà présents dans le jeu (éventuellement aucun) : identifiant, emplacement sur le canevas, orientation et couleur (ligne 3).
 
En réponse à l'accusé de réception du client (ligne 4), le serveur installe un nouveau canon dans l'espace de jeu, puis il signale les caractéristiques de cette installation non seulement au client qui l'a provoquée, mais également à tous les autres clients connectés. Le message expédié au nouveau client comporte cependant une différence (car c'est lui le propriétaire de ce nouveau canon) : en plus des caractéristiques du canon, qui sont fournies à tout le monde, il comporte un champ supplémentaire contenant simplement « le_vôtre » (comparez par exemple la ligne 5 avec la ligne 17, laquelle signale la connexion d'un autre joueur). Cette indication supplémentaire permet au client propriétaire du canon de distinguer parmi plusieurs messages similaires éventuels, celui qui contient l'identifiant unique que lui a attribué le serveur.
 
Les messages des lignes 6 et 7 sont des commandes envoyées par le client (réglage de la hausse et commande de tir). Dans la version précédente du jeu, nous avions déjà convenu que les canons se déplaceraient quelque peu (et au hasard) après chaque tir. Le serveur effectue donc cette opération, et s'empresse ensuite d'en faire connaître le résultat à tous les clients connectés. Le message reçu du serveur à la ligne 8 est donc l'indication d'un tel déplacement (les coordonnées fournies sont les coordonnées résultantes pour le canon concerné).
 
La ligne 11 reproduit le type de message expédié par le serveur lorsqu'une cible a été touchée. Les nouveaux scores de tous les joueurs sont ainsi communiqués à tous les clients.
 
Les messages serveur des lignes 12, 13 et 14 indiquent les actions entreprises par un autre joueur (réglage de hausse suivi d'un tir). Cette fois encore, le canon concerné est déplacé au hasard après qu'il ait tiré (ligne 15).
 
Lignes 16 et 17 : lorsque l'un des clients coupe sa connexion, le serveur en avertit tous les autres, afin que le canon correspondant disparaisse de l'espace de jeu sur tous les postes. À l'inverse, de nouveaux clients peuvent se connecter à tout moment pour participer au jeu.
 
Ligne 412 ⟶ 422 :
 
Le premier champ de chaque message indique sa teneur. Les messages envoyés par le client sont très simples : ils correspondent aux différentes actions entreprises par le joueur (modifications de l'angle de tir et commandes de feu). Ceux qui sont envoyés par le serveur sont un peu plus complexes. La plupart d'entre eux sont expédiés à tous les clients connectés, afin de les tenir informés du déroulement du jeu. En conséquence, ces messages doivent mentionner l'identifiant du joueur qui a commandé une action ou qui est concerné par un changement quelconque. Nous avons vu plus haut que ces identifiants sont des noms générés automatiquement par le gestionnaire de threads du serveur, chaque fois qu'un nouveau client se connecte.
 
Certains messages concernant l'ensemble du jeu contiennent plusieurs informations par champ. Dans ce cas, les différents « sous-champs » sont séparés par des points-virgules (lignes 3 et 11).
 
Ligne 418 ⟶ 429 :
Vous trouverez dans les pages qui suivent le script complet du programme serveur. Nous vous le présentons en trois morceaux successifs afin de rapprocher les commentaires du code correspondant, mais la numérotation de ses lignes est continue. Bien qu'il soit déjà relativement long et complexe, vous estimerez probablement qu'il mérite d'être encore perfectionné, notamment au niveau de la présentation générale. Nous vous laisserons le soin d'y ajouter vous-même tous les compléments qui vous sembleront utiles (par exemple, une proposition de choisir les coordonnées de la machine hôte au démarrage, une barre de menus, etc.) :
 
{{todo|num à droite}}
 
<pre>
1.#######################################################
2.# Jeu des bombardes - partie serveur #
Ligne 475 ⟶ 489 :
56. self.regl.config(state =DISABLED)
57.
</pre>
La classe Pupitre() est construite par dérivation de la classe de même nom importée du modune canon03. Elle hérite donc toutes les caractéristiques de celle-ci, mais nous devons surcharger6 ses méthodes tirer() et orienter() :
 
La classe <code>Pupitre()</code> est construite par dérivation de la classe de même nom importée du modune ''canon03''. Elle hérite donc toutes les caractéristiques de celle-ci, mais nous devons surcharger<ref>Rappel : dans une classe dérivée, vous pouvez définir une nouvelle méthode avec le même nom qu'une méthode de la classe parente, afin de modifier sa fonctionnalité dans la classe dérivée. Cela s'appelle surcharger cette méthode (voir aussi page {{todo}}).</ref> ses méthodes <code>tirer()</code> et <code>orienter()</code> :
 
Dans la version monoposte du logiciel, en effet, chacun des pupitres pouvait commander directement l'objet canon correspondant. Dans cette version réseau, par contre, ce sont les clients qui contrôlent à distance le fonctionnement des canons. Par conséquent, les pupitres qui apparaissent dans la fenêtre du serveur ne peuvent être que de simples répétiteurs des manoeuvres effectuées par les joueurs sur chaque client. Le bouton de tir et le curseur de réglage de la hausse sont donc désactivés, mais les indications fournies obéissent aux injonctions qui leur sont adressées par l'application principale.
Cette nouvelle classe Pupitre() sera également utilisée telle quelle dans chaque exemplaire du programme client. Dans la fenêtre de celui-ci comme dans celle du serveur, tous les pupitres seront affichés comme des répétiteurs, mais l'un d'entre eux cependant sera complètement fonctionnel : celui qui correspond au canon du joueur.
Toutes ces raisons expliquent également l'apparition des nouvelles méthodes : activer(), desactiver(), reglage() et valeur_score(), qui seront elles aussi invoquées par l'application principale, en réponse aux messages-instructions échangés entre le serveur et ses clients.
La classe ThreadConnexion() ci-dessous sert à instancier la série d'objets threads qui s'occuperont en parallèle de toutes les connexions lancées par les clients. Sa méthode run() contient la fonctionnalité centrale du serveur, à savoir la boucle d'instructions qui gère la réception des messages provenant d'un client particulier, lesquels entraînent chacun toute une cascade de réactions. Vous y trouverez la mise en oeuvre concrète du protocole de communication décrit dans les pages précédentes (certains messages étant cependant générés par les méthodes depl_aleat_canon() et goal() de la classe AppServeur() décrite plus loin).
 
Cette nouvelle classe <code>Pupitre()</code> sera également utilisée telle quelle dans chaque exemplaire du programme client. Dans la fenêtre de celui-ci comme dans celle du serveur, tous les pupitres seront affichés comme des répétiteurs, mais l'un d'entre eux cependant sera complètement fonctionnel : celui qui correspond au canon du joueur.
 
Toutes ces raisons expliquent également l'apparition des nouvelles méthodes : <code>activer()</code>, <code>desactiver()</code>, <code>reglage()</code> et <code>valeur_score()</code>, qui seront elles aussi invoquées par l'application principale, en réponse aux messages-instructions échangés entre le serveur et ses clients.
 
La classe <code>ThreadConnexion()</code> ci-dessous sert à instancier la série d'objets threads qui s'occuperont en parallèle de toutes les connexions lancées par les clients. Sa méthode <code>run()</code> contient la fonctionnalité centrale du serveur, à savoir la boucle d'instructions qui gère la réception des messages provenant d'un client particulier, lesquels entraînent chacun toute une cascade de réactions. Vous y trouverez la mise en oeuvre concrète du protocole de communication décrit dans les pages précédentes (certains messages étant cependant générés par les méthodes <code>depl_aleat_canon()</code> et <code>goal()</code> de la classe <code>AppServeur()</code> décrite plus loin).
 
{{todo|num à droite}}
 
<pre>
58.class ThreadConnexion(threading.Thread):
59. """objet thread gestionnaire d'une connexion client"""
Ligne 561 ⟶ 584 :
136. # Le thread se termine ici
137.
</pre>
 
=== Synchronisation de threads concurrents à l'aide de « verrous » (thread locks) ===
 
Au cours de votre examen du code ci-dessus, vous aurez certainement remarqué la structure particulière des blocs d'instructions par lesquelles le serveur expédie un même message à tous ses clients. Considérez par exemple les lignes 74 à 80 :
 
La ligne 75 active la méthode acquire() d'un objet « verrou » qui a été créé par le constructeur de l'application principale (voir plus loin). Cet objet est une instance de la classe Lock(), laquelle fait partie du module threading que nous avons importé en début de script. Les lignes suivantes (76 à 79) provoquent l'envoi d'un message à tous les clients connectés (sauf un). Ensuite, l'objet « verrou » est à nouveau sollicité, cette fois pour sa méthode release().
La ligne 75 active la méthode <code>acquire()</code> d'un objet « verrou » qui a été créé par le constructeur de l'application principale (voir plus loin). Cet objet est une instance de la classe <code>Lock()</code>, laquelle fait partie du module ''threading'' que nous avons importé en début de script. Les lignes suivantes (76 à 79) provoquent l'envoi d'un message à tous les clients connectés (sauf un). Ensuite, l'objet « verrou » est à nouveau sollicité, cette fois pour sa méthode <code>release()</code>.
A quoi cet objet « verrou » peut-il donc bien servir ? Puisqu'il est produit par une classe du module threading, vous pouvez deviner que son utilité concerne les threads. En fait, de tels objets « verrous » servent à synchroniser les threads concurrents. De quoi s'agit-il ?
 
A quoi cet objet « verrou » peut-il donc bien servir ? Puisqu'il est produit par une classe du module ''threading'', vous pouvez deviner que son utilité concerne les threads. En fait, de tels objets « verrous » servent à ''synchroniser les threads concurrents''. De quoi s'agit-il ?
 
Vous savez que le serveur démarre un thread différent pour chacun des clients qui se connecte. Ensuite, tous ces threads fonctionnent en parallèle. Il existe donc un risque que de temps à autre, deux ou plusieurs de ces threads essaient d'utiliser une ressource commune en même temps.
 
Dans les lignes de code que nous venons de discuter, par exemple, nous avons affaire à un thread qui souhaite exploiter quasiment toutes les connexions présentes pour poster un message. Il est donc parfaitement possible que pendant ce temps, un autre thread tente d'exploiter lui aussi l'une ou l'autre de ces connexions, ce qui risque de provoquer un dysfonctionnement (en l'occurrence, la superposition chaotique de plusieurs messages).
 
Un tel problème de concurrence entre threads peut être résolu par l'utilisation d'un objet-verrou (thread lock). Un tel objet n'est créé qu'en un seul exemplaire, dans un espace de noms accessible à tous les threads concurrents. Il se caractérise essentiellement par le fait qu'il se trouve toujours dans l'un ou l'autre de deux états : soit verrouillé, soit déverrouillé. Son état initial est l'état déverrouillé.
Un tel problème de ''concurrence entre threads'' peut être résolu par l'utilisation d'un objet-verrou (thread lock). Un tel objet n'est créé qu'en un seul exemplaire, dans un espace de noms accessible à tous les threads concurrents. Il se caractérise essentiellement par le fait qu'il se trouve toujours dans l'un ou l'autre de deux états : soit verrouillé, soit déverrouillé. Son état initial est l'état déverrouillé.
 
;Utilisation
 
Lorsqu'un thread quelconque s'apprête à accéder à une ressource commune, il active d'abord la méthode <code>acquire()</code> du verrou. Si celui-ci était dans l'état déverrouillé, il se verrouille, et le thread demandeur peut alors utiliser la ressource commune, en toute tranquillité. Lorsqu'il aura fini d'utiliser la ressource, il s'empressera cependant d'activer la méthode <code>release()</code> du verrou, ce qui le fera repasser dans l'état déverrouillé.
 
En effet : Si un autre thread concurrent active lui aussi la méthode acquire() du verrou, alors que celui-ci est dans l'état verrouillé, la méthode « ne rend pas la main », provoquant le blocage de ce thread, lequel suspend donc son activité jusqu'à ce que le verrou repasse dans l'état déverrouillé. Ceci l'empêche donc d'accéder à la ressource commune durant tout le temps où un autre thread s'en sert. Lorsque le verrou est déverrouillé, l'un des threads en attente (il peut en effet y en avoir plusieurs) reprend alors son activité, et ainsi de suite.
En effet : Si un autre thread concurrent active lui aussi la méthode <code>acquire()</code> du verrou, alors que celui-ci est dans l'état verrouillé, la méthode « ne rend pas la main », provoquant le blocage de ce thread, lequel suspend donc son activité jusqu'à ce que le verrou repasse dans l'état déverrouillé. Ceci l'empêche donc d'accéder à la ressource commune durant tout le temps où un autre thread s'en sert. Lorsque le verrou est déverrouillé, l'un des threads en attente (il peut en effet y en avoir plusieurs) reprend alors son activité, et ainsi de suite.
L'objet verrou mémorise les références des threads bloqués, de manière à n'en débloquer qu'un seul à la fois lorsque sa méthode release() est invoquée. Il faut donc toujours veiller à ce que chaque thread qui active la méthode acquire() du verrou avant d'accéder à une ressource, active également sa méthode release() peu après.
 
Pour autant que tous les threads concurrents respectent la même procédure, cette technique simple empêche donc qu'une ressource commune soit exploitée en même temps par plusieurs d'entre eux. On dira dans ce cas que les threads ont été synchronisés.
L'objet verrou mémorise les références des threads bloqués, de manière à n'en débloquer qu'un seul à la fois lorsque sa méthode <code>release()</code> est invoquée. Il faut donc toujours veiller à ce que chaque thread qui active la méthode acquire() du verrou avant d'accéder à une ressource, active également sa méthode <code>release()</code> peu après.
 
Pour autant que tous les threads concurrents respectent la même procédure, cette technique simple empêche donc qu'une ressource commune soit exploitée en même temps par plusieurs d'entre eux. On dira dans ce cas que les threads ont été ''synchronisés''.
 
=== Programme serveur : suite et fin ===
 
Les deux classes ci-dessous complètent le script serveur. Le code implémenté dans la classe <code>ThreadClients()</code> est assez similaire à celui que nous avions développé précédemment pour le corps d'application du logiciel de « Chat ». Dans le cas présent, toutefois, nous le plaçons dans une classe dérivée de <code>Thread()</code>, parce que devons faire fonctionner ce code dans un thread indépendant de celui de l'application principale. Celui-ci est en effet déjà complètement accaparé par la boucle <code>mainloop()</code> de l'interface graphique7graphique<ref>Nous détaillerons cette question à la page {{todo}}, car elle ouvre quelques perspectives intéressantes.</ref>.
 
La classe AppServeur() dérive de la classe AppBombardes() du module canon04. Nous lui avons ajouté un ensemble de méthodes complémentaires destinées à exécuter toutes les opérations qui résulteront du dialogue entamé avec les clients. Nous avons déjà signalé plus haut que les clients instancieront chacun une version dérivée de cette classe (afin de profiter des mêmes définitions de base pour la fenêtre, le canevas, etc.).
La classe <code>AppServeur()</code> dérive de la classe <code>AppBombardes()</code> du module ''canon04''. Nous lui avons ajouté un ensemble de méthodes complémentaires destinées à exécuter toutes les opérations qui résulteront du dialogue entamé avec les clients. Nous avons déjà signalé plus haut que les clients instancieront chacun une version dérivée de cette classe (afin de profiter des mêmes définitions de base pour la fenêtre, le canevas, etc.).
 
{{todo|num à droite}}
 
<pre>
138.class ThreadClients(threading.Thread):
139. """objet thread gérant la connexion de nouveaux clients"""
Ligne 727 ⟶ 763 :
280.
281.if __name__ =='__main__':
282. AppServeur(host, port, largeur, hauteur).mainloop()
</pre>
 
;Commentaires
 
* Ligne 173 : Il vous arrivera de temps à autre de vouloir « intercepter » l'ordre de fermeture de l'application que l'utilisateur déclenche en quittant votre programme, par exemple parce que vous voulez forcer la sauvegarde de données importantes dans un fichier, ou fermer aussi d'autres fenêtres, etc. Il suffit pour ce faire de détecter l'événement <Destroy>, comme nous le faisons ici pour forcer la terminaison de tous les threads actifs.
 
Lignes 179 à 186 : Au passage, voici comment vous pouvez associer une barre de défilement (widget Scrollbar) à un widget Text (vous pouvez faire de même avec un widget Canvas), sans faire appel à la bibliothèque Pmw8.
* Lignes 179 à 186 : Au passage, voici comment vous pouvez associer une barre de défilement (widget ''Scrollbar'') à un widget ''Text'' (vous pouvez faire de même avec un widget ''Canvas''), sans faire appel à la bibliothèque ''Pmw''<ref>Voir : Python Mega Widgets, page {{todo}}.</ref>.
Ligne 190 : Instanciation de l'obet « verrou » permettant de synchroniser les threads.
 
Lignes 202, 203 : Instanciation de l'objet thread qui attendra en permanence les demandes de connexion des clients potentiels.
* Ligne 190 : Instanciation de l'obet « verrou » permettant de synchroniser les threads.
Lignes 205 à 213, 215 à 227 : Ces méthodes surchargent les méthodes de même nom héritées de leur classe parente. Elles commencent par invoquer celles-ci pour effectuer le même travail (lignes 207, 217), puis ajoutent leur fonctionnalité propre, laquelle consiste à signaler à tout le monde ce qui vient de se passer.
 
Lignes 229 à 243 : Cette méthode instancie un nouveau poste de tir, chaque fois qu'un nouveau client se connecte. Les canons sont placés alternativement dans le camp de droite et dans celui de gauche, procédure qui pourrait bien évidemment être améliorée. La liste des couleurs prévues limite le nombre de clients à 10, ce qui devrait suffire.
* Lignes 202, 203 : Instanciation de l'objet thread qui attendra en permanence les demandes de connexion des clients potentiels.
 
* Lignes 205 à 213, 215 à 227 : Ces méthodes surchargent les méthodes de même nom héritées de leur classe parente. Elles commencent par invoquer celles-ci pour effectuer le même travail (lignes 207, 217), puis ajoutent leur fonctionnalité propre, laquelle consiste à signaler à tout le monde ce qui vient de se passer.
 
* Lignes 229 à 243 : Cette méthode instancie un nouveau poste de tir, chaque fois qu'un nouveau client se connecte. Les canons sont placés alternativement dans le camp de droite et dans celui de gauche, procédure qui pourrait bien évidemment être améliorée. La liste des couleurs prévues limite le nombre de clients à 10, ce qui devrait suffire.
 
=== Programme client ===
 
Le script correspondant au logiciel client est reproduit ci-après. Comme celui qui correspond au serveur, il est relativement court, parce qu'il utilise lui aussi l'importation de modules et l'héritage de classes. Le script serveur doit avoir été sauvegardé dans un fichier-module nommé ''canon_serveur.py''. Ce fichier doit être placé dans le répertoire courant, de même que les fichiers-modules ''canon03.py'' et ''canon04.py'' qu'il utilise lui-même.
 
De ces modules ainsi importés, le présent script utilise les classes Canon() et Pupitre() à l'identique, ainsi qu'une forme dérivée de la classe AppServeur(). Dans cette dernière, de nombreuses méthodes ont été surchargées, afin d'adapter leur fonctionnalité. Considérez par exemple les méthodes goal() et depl_aleat_canon(), dont la variante surchargée ne fait plus rien du tout (instruction pass), parce que le calcul des scores et le repositionnement des canons après chaque tir ne peuvent être effectués que sur le serveur seulement.
De ces modules ainsi importés, le présent script utilise les classes <code>Canon()</code> et <code>Pupitre()</code> à l'identique, ainsi qu'une forme dérivée de la classe <code>AppServeur()</code>. Dans cette dernière, de nombreuses méthodes ont été surchargées, afin d'adapter leur fonctionnalité. Considérez par exemple les méthodes <code>goal()</code> et <code>depl_aleat_canon()</code>, dont la variante surchargée ne fait plus rien du tout (instruction pass), parce que le calcul des scores et le repositionnement des canons après chaque tir ne peuvent être effectués que sur le serveur seulement.
C'est dans la méthode run() de la classe ThreadSocket() (lignes 86 à 126) que se trouve le code traitant les messages échangés avec le serveur. Nous y avons d'ailleurs laissé une instruction print (à la ligne 88) afin que les messages reçus du serveur apparaissent sur la sortie standard. Si vous réalisez vous-même une forme plus définitive de ce jeu, vous pourrez bien évidemment supprimer cette instruction.
 
C'est dans la méthode <code>run()</code> de la classe <code>ThreadSocket()</code> (lignes 86 à 126) que se trouve le code traitant les messages échangés avec le serveur. Nous y avons d'ailleurs laissé une instruction print (à la ligne 88) afin que les messages reçus du serveur apparaissent sur la sortie standard. Si vous réalisez vous-même une forme plus définitive de ce jeu, vous pourrez bien évidemment supprimer cette instruction.
 
{{todo|num à droite}}
 
<pre>
1.#######################################################
2.# Jeu des bombardes - partie cliente #
Ligne 888 ⟶ 935 :
143. AppClient(host, port, largeur, hauteur).mainloop()
144.
</pre>
 
;Commentaires
 
* Lignes 15, 16 : Vous pouvez vous-même perfectionner ce script en lui ajoutant un formulaire qui demandera ces valeurs à l'utilisateur au cours du démarrage.
 
Lignes 19 à 27 : Le constructeur de la classe parente se termine en invoquant la méthode specificites(). On peut donc placer dans celle-ci ce qui doit être construit différemment dans le serveur et dans les clients. (Le serveur instancie notamment un widget text qui n'est pas repris dans les clients ; l'un et l'autre démarrent des objets threads différents pour gérer les connexions).
* Lignes 19 à 27 : Le constructeur de la classe parente se termine en invoquant la méthode <code>specificites()</code>. On peut donc placer dans celle-ci ce qui doit être construit différemment dans le serveur et dans les clients. (Le serveur instancie notamment un widget text qui n'est pas repris dans les clients ; l'un et l'autre démarrent des objets threads différents pour gérer les connexions).
Lignes 39 à 42 : Cette méthode est invoquée chaque fois que l'utilisateur enfonce le bouton de tir. Le canon ne peut cependant pas effectuer des tirs en rafale. Par conséquent, aucun nouveau tir ne peut être accepté tant que l'obus précédent n'a pas terminé sa trajectoire. C'est la valeur « vraie » ou « fausse » renvoyée par la méthode feu() de l'objet canon qui indique si le tir a été accepté ou non. On utilise cette valeur pour ne signaler au serveur (et donc aux autres clients) que les tirs qui ont effectivement eu lieu.
 
* Lignes 39 à 42 : Cette méthode est invoquée chaque fois que l'utilisateur enfonce le bouton de tir. Le canon ne peut cependant pas effectuer des tirs en rafale. Par conséquent, aucun nouveau tir ne peut être accepté tant que l'obus précédent n'a pas terminé sa trajectoire. C'est la valeur « vraie » ou « fausse » renvoyée par la méthode <code>feu()</code> de l'objet canon qui indique si le tir a été accepté ou non. On utilise cette valeur pour ne signaler au serveur (et donc aux autres clients) que les tirs qui ont effectivement eu lieu.
 
Lignes 105 à 108 : Un nouveau canon doit être ajouté dans l'espace de jeu de chacun (c'est-à-dire dans le canevas du serveur, et dans le canevas de tous les clients connectés), chaque fois qu'un nouveau client se connecte. Le serveur envoie donc à ce moment un même message à tous les clients pour les informer de la présence de ce nouveau partenaire. Mais le message envoyé à celui-ci en particulier comporte un champ supplémentaire (lequel contient simplement la chaîne « le_vôtre »), afin que ce partenaire sache que ce message concerne son propre canon, et qu'il puisse donc activer le pupitre correspondant, tout en mémorisant l'identifiant qui lui a été attribué par le serveur (voir également les lignes 35 à 37).
 
Ligne 900 ⟶ 951 :
Cette application vous a été présentée dans un but didactique. Nous y avons délibérément simplifié un certain nombre de problèmes. Par exemple, si vous testez vous-même ces logiciels, vous constaterez que les messages échangés sont souvent rassemblés en « paquets », ce qui nécessiterait d'affiner les algorithmes mis en place pour les interpréter. De même, nous avons à peine esquissé le mécanisme fondamental du jeu : répartition des joueurs dans les deux camps, destruction des canons touchés, obstacles divers, etc. Il vous reste bien des pistes à explorer !
(18) {{Exercices :}}
18.1.#Simplifiez le script correspondant au client de « chat » décrit à la page 287, en supprimant l'un des deux objets threads. Arrangez-vous par exemple pour traiter l'émission de messages au niveau du thread principal.
18.2.#Modifiez le jeu des bombardes (version monoposte) du chapitre 15 (voir pages 229 et suivantes), en ne gardant qu'un seul canon et un seul pupitre de pointage. Ajoutez-y une cible mobile, dont le mouvement sera géré par un objet thread indépendant (de manière à bien séparer les portions de code qui contrôlent l'animation de la cible et celle du boulet).
{{fin}}
 
== Utilisation de threads pour optimiser les animations. ==
 
Le dernier exercice proposé à la fin de la section précédente nous suggère une méthodologie de développements d'applications qui peut se révéler particulièrement intéressante, dans le cas de jeux vidéo impliquant plusieurs animations simultanées.
 
En effet : si vous programmez les différents éléments animés d'un jeu comme des objets indépendants fonctionnant chacun sur son propre thread, alors non seulement vous vous simplifiez la tâche et vous améliorez la lisibilité de votre script, mais encore vous augmentez la vitesse d'exécution et donc la fluidité de ces animations. Pour arriver à ce résultat, vous devrez abandonner la technique de temporisation que vous avez exploitée jusqu'ici, mais celle que vous allez utiliser à sa place est finalement plus simple !
 
=== Temporisation des animations à l'aide de after() ===
 
Dans toutes les animations que nous avons décrites jusqu'à présent, le « moteur » était constitué à chaque fois par une fonction contenant la méthode <code>after()</code>, laquelle est associée d'office à tous les widgets ''Tkinter''. Vous savez que cette méthode permet d'introduire une temporisation dans le déroulement de votre programme : un chronomètre interne est activé, de telle sorte qu'après un intervalle de temps convenu, le système invoque automatiquement une fonction quelconque. En général, c'est la fonction contenant <code>after()</code> qui est elle-même invoquée : on réalise ainsi une boucle récursive, dans laquelle il reste à programmer les déplacements des divers objets graphiques.
 
Vous devez bien comprendre que pendant l'écoulement de l'intervalle de temps programmé à l'aide de la méthode after(), votre application n'est pas du tout « figée ». Vous pouvez par exemple pendant ce temps : cliquer sur un bouton, redimensionner la fenêtre, effectuer une entrée clavier, etc. Comment cela est-il rendu possible ?
Vous devez bien comprendre que pendant l'écoulement de l'intervalle de temps programmé à l'aide de la méthode <code>after()</code>, votre application n'est pas du tout « figée ». Vous pouvez par exemple pendant ce temps : cliquer sur un bouton, redimensionner la fenêtre, effectuer une entrée clavier, etc. Comment cela est-il rendu possible ?
Nous avons mentionné déjà à plusieurs reprises le fait que les applications graphiques modernes comportent toujours une sorte de moteur qui « tourne » continuellement en tâche de fond : ce dispositif se met en route lorsque vous activez la méthode mainloop() de votre fenêtre principale. Comme son nom l'indique fort bien, cette méthode met en oeuvre une boucle répétitive perpétuelle, du même type que les boucles while que vous connaissez bien. De nombreux mécanismes sont intégrés à ce « moteur ». L'un d'entre eux consiste à réceptionner tous les événements qui se produisent, et à les signaler ensuite à l'aide de messages appropriés aux programmes qui en font la demande (voir : Programmes pilotés par des événements, page 86), d'autres contrôlent les actions à effectuer au niveau de l'affichage, etc. Lorsque vous faites appel à la méthode after() d'un widget, vous utilisez en fait un mécanisme de chronométrage qui est intégré lui aussi à mainloop(), et c'est donc ce gestionnaire central qui déclenche l'appel de fonction que vous souhaitez, après un certain intervalle de temps.
 
La technique d'animation utilisant la méthode after() est la seule possible pour une application fonctionnant toute entière sur un seul thread, parce que c'est la boucle mainloop() qui dirige l'ensemble du comportement d'une telle application de manière absolue. C'est notamment elle qui se charge de redessiner tout ou partie de la fenêtre chaque fois que cela s'avère nécessaire. Pour cette raison, vous ne pouvez pas imaginer de construire un moteur d'animation qui redéfinirait les coordonnées d'un objet graphique à l'intérieur d'une simple boucle while, par exemple, parce que pendant tout ce temps l'exécution de mainloop() resterait suspendue, ce qui aurait pour conséquence que pendant tout ce temps aucun objet graphique ne serait redessiné (en particulier celui que vous souhaitez mettre en mouvement !). En fait, toute l'application apparaîtrait figée, aussi longtemps que la boucle while ne serait pas interrompue.
Nous avons mentionné déjà à plusieurs reprises le fait que les applications graphiques modernes comportent toujours une sorte de moteur qui « tourne » continuellement en tâche de fond : ce dispositif se met en route lorsque vous activez la méthode <code>mainloop()</code> de votre fenêtre principale. Comme son nom l'indique fort bien, cette méthode met en oeuvre une boucle répétitive perpétuelle, du même type que les boucles <code>while</code> que vous connaissez bien. De nombreux mécanismes sont intégrés à ce « moteur ». L'un d'entre eux consiste à réceptionner tous les événements qui se produisent, et à les signaler ensuite à l'aide de messages appropriés aux programmes qui en font la demande (voir : Programmes pilotés par des événements, page {{todo}}), d'autres contrôlent les actions à effectuer au niveau de l'affichage, etc. Lorsque vous faites appel à la méthode <code>after()</code> d'un widget, vous utilisez en fait un mécanisme de chronométrage qui est intégré lui aussi à <code>mainloop()</code>, et c'est donc ce gestionnaire central qui déclenche l'appel de fonction que vous souhaitez, après un certain intervalle de temps.
Puisqu'elle est la seule possible, c'est donc cette technique que nous avons utilisée jusqu'à présent dans tous nos exemples d'applications mono-thread. Elle comporte cependant un inconvénient gênant : du fait du grand nombre d'opérations prises en charge à chaque itération de la boucle mainloop(), la temporisation que l'on peut programmer à l'aide de after() ne peut pas être très courte. Par exemple, elle ne peut guère descendre en dessous de 15 ms sur un PC typique (processeur de type Pentium IV, f = 1,5 GHz). Vous devez tenir compte de cette limitation si vous souhaitez développer des animations rapides.
 
Un autre inconvénient lié à l'utilisation de la méthode after() réside dans la structure de la boucle d'animation (à savoir une fonction ou une méthode « récursive », c'est-à-dire qui s'appelle elle-même) : il n'est pas toujours simple en effet de bien maîtriser ce genre de construction logique, en particulier si l'on souhaite programmer l'animation de plusieurs objets graphiques indépendants, dont le nombre ou les mouvements doivent varier au cours du temps.
La technique d'animation utilisant la méthode <code>after()</code> est la seule possible pour une application fonctionnant toute entière sur un seul thread, parce que c'est la boucle <code>mainloop()</code> qui dirige l'ensemble du comportement d'une telle application de manière absolue. C'est notamment elle qui se charge de redessiner tout ou partie de la fenêtre chaque fois que cela s'avère nécessaire. Pour cette raison, vous ne pouvez pas imaginer de construire un moteur d'animation qui redéfinirait les coordonnées d'un objet graphique à l'intérieur d'une simple boucle <code>while</code>, par exemple, parce que pendant tout ce temps l'exécution de <code>mainloop()</code> resterait suspendue, ce qui aurait pour conséquence que pendant tout ce temps aucun objet graphique ne serait redessiné (en particulier celui que vous souhaitez mettre en mouvement !). En fait, toute l'application apparaîtrait figée, aussi longtemps que la boucle while ne serait pas interrompue.
 
Puisqu'elle est la seule possible, c'est donc cette technique que nous avons utilisée jusqu'à présent dans tous nos exemples d'applications mono-thread. Elle comporte cependant un inconvénient gênant : du fait du grand nombre d'opérations prises en charge à chaque itération de la boucle <code>mainloop()</code>, la temporisation que l'on peut programmer à l'aide de <code>after()</code> ne peut pas être très courte. Par exemple, elle ne peut guère descendre en dessous de 15 ms sur un PC typique (processeur de type Pentium IV, f = 1,5 GHz). Vous devez tenir compte de cette limitation si vous souhaitez développer des animations rapides.
 
Un autre inconvénient lié à l'utilisation de la méthode <code>after()</code> réside dans la structure de la boucle d'animation (à savoir une fonction ou une méthode « récursive », c'est-à-dire qui s'appelle elle-même) : il n'est pas toujours simple en effet de bien maîtriser ce genre de construction logique, en particulier si l'on souhaite programmer l'animation de plusieurs objets graphiques indépendants, dont le nombre ou les mouvements doivent varier au cours du temps.
 
=== Temporisation des animations à l'aide de time.sleep() ===
 
Vous pouvez ignorer les limitations de la méthode <code>after()</code> évoquées ci-dessus, si vous en confiez l'animation de vos objets graphiques à des threads indépendants. En procédant ainsi, vous vous libérez de la tutelle de <code>mainloop()</code>, et il vous est permis alors de construire des procédures d'animation sur la base de structures de boucles plus « classiques », utilisant l'instruction <code>while</code> ou l'instruction for par exemple.
Au cœur de chacune de ces boucles, vous devez cependant toujours veiller à insérer une temporisation pendant laquelle vous « rendez la main » au système d'exploitation (afin qu'il puisse s'occuper des autres threads). Pour ce faire, vous ferez appel à la fonction sleep() du module time. Cette fonction permet de suspendre l'exécution du thread courant pendant un certain intervalle de temps, pendant lequel les autres threads et applications continuent à fonctionner. La temporisation ainsi produite ne dépend pas de mainloop(), et par conséquent, elle peut être beaucoup plus courte que celle que vous autorise la méthode after().
Attention : cela ne signifie pas que le rafraîchissement de l'écran sera lui-même plus rapide, car ce rafraîchissement continue à être assuré par mainloop(). Vous pourrez cependant accélérer fortement les différents mécanismes que vous installez vous-même dans vos procédures d'animation. Dans un logiciel de jeu, par exemple, il est fréquent d'avoir à comparer périodiquement les positions de deux mobiles (tels qu' un projectile et une cible), afin de pouvoir entreprendre une action lorsqu'ils se rejoignent (explosion, ajout de points à un score, etc.). Avec la technique d'animation décrite ici, vous pouvez effectuer beaucoup plus souvent ces comparaisons et donc espérer un résultat plus précis. De même, vous pouvez augmenter le nombre de points pris en considération pour le calcul d'une trajectoire en temps réel, et donc affiner celle-ci.
 
Au cœur de chacune de ces boucles, vous devez cependant toujours veiller à insérer une temporisation pendant laquelle vous « rendez la main » au système d'exploitation (afin qu'il puisse s'occuper des autres threads). Pour ce faire, vous ferez appel à la fonction <code>sleep()</code> du module ''time''. Cette fonction permet de suspendre l'exécution du thread courant pendant un certain intervalle de temps, pendant lequel les autres threads et applications continuent à fonctionner. La temporisation ainsi produite ne dépend pas de <code>mainloop()</code>, et par conséquent, elle peut être beaucoup plus courte que celle que vous autorise la méthode <code>after()</code>.
Remarque : Lorsque vous utilisez la méthode after(), vous devez lui indiquer la temporisation souhaitée en millisecondes, sous la forme d'un argument entier. Lorsque vous faites appel à la fonction sleep(), par contre, l'argument que vous transmettez doit être exprimé en secondes, sous la forme d'un réel (float). Vous pouvez cependant utiliser des très petites valeurs (0.0003 par ex.).
 
Attention : cela ne signifie pas que le rafraîchissement de l'écran sera lui-même plus rapide, car ce rafraîchissement continue à être assuré par <code>mainloop()</code>. Vous pourrez cependant accélérer fortement les différents mécanismes que vous installez vous-même dans vos procédures d'animation. Dans un logiciel de jeu, par exemple, il est fréquent d'avoir à comparer périodiquement les positions de deux mobiles (tels qu' un projectile et une cible), afin de pouvoir entreprendre une action lorsqu'ils se rejoignent (explosion, ajout de points à un score, etc.). Avec la technique d'animation décrite ici, vous pouvez effectuer beaucoup plus souvent ces comparaisons et donc espérer un résultat plus précis. De même, vous pouvez augmenter le nombre de points pris en considération pour le calcul d'une trajectoire en temps réel, et donc affiner celle-ci.
 
Remarque : Lorsque vous utilisez la méthode <code>after()</code>, vous devez lui indiquer la temporisation souhaitée en millisecondes, sous la forme d'un argument entier. Lorsque vous faites appel à la fonction <code>sleep()</code>, par contre, l'argument que vous transmettez doit être exprimé en secondes, sous la forme d'un réel (''float''). Vous pouvez cependant utiliser des très petites valeurs (0.0003 par ex.).
 
=== Exemple concret ===
 
Le petit script reproduit ci-dessous illustre la mise en oeuvre de cette technique, dans un exemple volontairement minimaliste. Il s'agit d'une petite application graphique dans laquelle une figure se déplace en cercle à l'intérieur d'un canevas. Son « moteur » <code>mainloop()</code> est lancé comme d'habitude sur le thread principal. Le constructeur de l'application instancie un canevas contenant le dessin d'un cercle, un bouton et un objet thread. C'est cet objet thread qui assure l'animation du dessin, mais sans faire appel à la méthode <code>after()</code> d'un widget. Il utilise plutôt une simple boucle <code>while</code> très classique, installée dans sa méthode <code>run()</code>.
 
{{image manquante}}
 
{{todo|num à droite}}
 
<pre>
1.from Tkinter import *
2.from math import sin, cos
Ligne 967 ⟶ 1 031 :
35.
36.App().mainloop()
</pre>
 
;Commentaires
 
* Lignes 13 & 14 : Afin de simplifier notre exemple au maximum, nous créons l'objet thread chargé de l'animation, directement dans le constructeur de l'application principale. Cet objet thread ne démarrera cependant que lorsque l'utilisateur aura cliqué sur le bouton « Marche », qui active sa méthode <code>start()</code> (rappelons ici que c'est cette méthode intégrée qui lancera elle-même la méthode <code>run()</code> où nous avons installé notre boucle d'animation).
 
Ligne 15 : Vous ne pouvez par redémarrer un thread qui s'est terminé. De ce fait, vous ne pouvez lancer cette animation qu'une seule fois (tout au moins sous la forme présentée ici). Pour vous en convaincre, activez la ligne n° 15 en enlevant le caractère # situé au début (et qui fait que Python considère qu'il s'agit d'un simple commentaire) : lorsque l'animation est lancée, un clic de souris sur le bouton ainsi mis en place provoque la sortie de la boucle while des lignes 27-31, ce qui termine la méthode run(). L'animation s'arrête, mais le thread qui la gérait s'est terminé lui aussi. Si vous essayez de le relancer à l'aide du bouton « Marche », vous n'obtenez rien d'autre qu'un message d'erreur.
* Ligne 15 : Vous ne pouvez par redémarrer un thread qui s'est terminé. De ce fait, vous ne pouvez lancer cette animation qu'une seule fois (tout au moins sous la forme présentée ici). Pour vous en convaincre, activez la ligne n° 15 en enlevant le caractère <code>#</code> situé au début (et qui fait que Python considère qu'il s'agit d'un simple commentaire) : lorsque l'animation est lancée, un clic de souris sur le bouton ainsi mis en place provoque la sortie de la boucle <code>while</code> des lignes 27-31, ce qui termine la méthode <code>run()</code>. L'animation s'arrête, mais le thread qui la gérait s'est terminé lui aussi. Si vous essayez de le relancer à l'aide du bouton « Marche », vous n'obtenez rien d'autre qu'un message d'erreur.
Lignes 26 à 31 : Pour simuler un mouvement circulaire uniforme, il suffit de faire varier continuellement la valeur d'un angle a. Le sinus et le cosinus de cet angle permettent alors de calculer les coordonnées x et y du point de la circonférence qui correspond à cet angle9.
 
À chaque itération, l'angle ne varie que d'un centième de radian seulement (environ 0,6°), et il faudra donc 628 itérations pour que le mobile effectue un tour complet. La temporisation choisie pour ces itérations se trouve à la ligne 31 : 10 millisecondes. Vous pouvez accélérer le mouvement en diminuant cette valeur, mais vous ne pourrez guère descendre en dessous de 1 milliseconde (0.001 s), ce qui n'est déjà pas si mal.
* Lignes 26 à 31 : Pour simuler un mouvement circulaire uniforme, il suffit de faire varier continuellement la valeur d'un angle a. Le sinus et le cosinus de cet angle permettent alors de calculer les coordonnées x et y du point de la circonférence qui correspond à cet angle<ref>Vous pouvez trouver quelques explications complémentaires à ce sujet, à la page {{todo}}.</ref>. À chaque itération, l'angle ne varie que d'un centième de radian seulement (environ 0,6°), et il faudra donc 628 itérations pour que le mobile effectue un tour complet. La temporisation choisie pour ces itérations se trouve à la ligne 31 : 10 millisecondes. Vous pouvez accélérer le mouvement en diminuant cette valeur, mais vous ne pourrez guère descendre en dessous de 1 milliseconde (0.001 s), ce qui n'est déjà pas si mal.
 
== Notes ==
{{références}}