Technologie/Éléments théoriques et pratiques/Résistance des matériaux/Formulaire des poutres simples - Déformée

Le présent formulaire sert à la vérification de l'état limite en service (ELS). La poutre ayant déjà été vérifiée à l'ELU (voir Formulaire des poutres simples - Efforts de cohésion), on sait qu'elle ne risque pas de rompre. Mais elle se déforme élastiquement sous l'effet du chargement ; il faut donc vérifier que la flèche que prend la poutre reste compatible avec son usage. En particulier, s'il existe un jeu fonctionnel, il faut s'assurer que la flèche est inférieure au jeu.


plan du chapitre en cours

Éléments théoriques et pratiques


Niveau

A - débutant
B - lecteur averti
C - compléments

Avancement

Ébauche Projet
En cours Ébauche

des chapitres

Fait à environ 50 % En cours
En cours de finition Avancé
Une version complète existe Terminé



Quoi de neuf
Docteur ?


ajouter une rubrique [1]

les 5 dernières mises à jour notables
  1. Calcul des assemblages par filetage
  2. Courroies de transmission
  3. Le Rein, site d’implantation en Biocompatibilité
  4. -
  5. début de
  6. réorganisation du
  7. livre de technologie

La flèche est également un élément esthétique, de compatibilité avec les éléments posés dessus (par exemple un plancher), et permet d'avoir des renseignements sur le comportement dynamique (vibrations). En génie civil, on admet typiquement une flèche égale :

  • à L/150 (soit 1/150 de la portée L) pour les parties d'ouvrage en console n'ayant pas à supporter couramment une circulation (auvents, débords de toiture), pour les tubes d'une structure supportant un poste électrique HTB (RTE[1]) ;
  • à L/200 pour les pièces supportant directement des éléments de couverture (chevrons, liteaux), la charpente d'une structure supportant un poste électrique HTB (RTE)
  • à L/250 pour une poutre, dalle ou console soumise à des charges quasi-permanentes (clause 7.4.1.4 de l'Eurocode 2. Béton armé) ;
  • à L/300 pour une solive supportant un plancher, les pannes, les pièces supportant directement des matériaux verriers, les consoles supportant une circulation (montage ou entretien), les poteaux avec ponts roulants, les poteaux avec remplissage en maçonnerie prenant appui sur le poteau, les poteaux destinés à recevoir un vitrage sur plus de la moitié de leur hauteur, les éléments fléchis reposant sur deux ou plusieurs appuis, et ne supportant pas d'éléments de remplissage ;
  • à L/400 pour les ouvrages fléchis autres que les consoles, et supportant une circulation (montage ou entretien) ou un remplissage ;
  • à L/500 pour un linteau de menuiserie ;
  • L/600 pour un pont forestier neuf acier-bois (Ministère des ressources naturelles, Québec) ;

De manière un peu plus générale[2] :

  • on peut imposer une flèche absolue (en mm) si l'on ne veut pas que la poutre touche un élément proche (par exemple une vitre) ;
  • la flèche maximale typique pour une structure métallique (hangar, hall industriel…) vaut L/200 ;
  • la flèche ne sera pas visible à l'œil nu si elle est inférieure à L/300 ;
  • si la poutre est voisine d'un élément rectiligne parallèle, par exemple proche du sol pour une poutre horizontale, la flèche ne sera pas visible si elle est inférieure à L/500.

La fibre neutre prend une forme appelée « déformée », qui s'exprime par une fonction déplacement y = u(x ) ; par la suite, on la note simplement y(x ). La flèche est l'extremum de cette fonction :

.

La pente est la dérivée de la déformée (coefficient directeur de la tangente) ; comme elle est faible (on suppose des petites déformations), cela correspond approximativement à l'angle θ en radians que fait la tangente avec l'horizontale :

.

La courbure, définie comme l'inverse du rayon de courbure, est la dérivée seconde de la déformée :

et est donnée par

  • la valeur du moment fléchissant Mf ;
  • la rigidité de la poutre, qui dépend
    • de la rigidité propre au matériau, donnée par le module de Young E (MPa),
    • la rigidité due à la forme de la section, donnée par le moment quadratique IGz, noté par la suite I.

On obtient l'équation différentielle

.

La résolution de cette équation donne y.

Dans le cas de sollicitations composées, on ne peut pas ajouter les flèches ; il faut ajouter les équations des déformées, puis rechercher les extrema de cette nouvelle fonction.

Problèmes isostatiques

modifier

Poutres bi-appuyées

modifier
Sollicitation Flèche Pente
Équation de la déformée
 

force concentrée en son centre

 

 

 
 
 

force concentrée

 

 

 

 

 

 

 

force concentrée à l'extérieur des appuis

 

 
 

 

 
 

 

 ,  

 

charge uniforme

 

 

 
 
 

charge linéaire croissante

 

 

 

 

 
 

couple concentré en A

 

 

 

 

 
 

couple concentré en x = a

 

 

 

 

 

Poutre console

modifier

La poutre est encastrée à gauche (A) et libre à droite. On a toujours θA = 0 et xf = L.

Sollicitation Flèche Pente
Équation de la déformée
 
charge concentrée à l'extrémité
   
 
 
charge concentrée
   
 

 

 
charge uniforme
   
 
 
charge croissante q(x ) = q0x/L
   
 
 
charge décroissante q(x ) = q0(1 - x/L)
   
 
 
couple
   
 

 

Problèmes hyperstatiques de degré 1

modifier

Poutre encastrée-appuyée

modifier

La poutre est encastrée à gauche (A) et appuyée à droite (B). On a toujours θA = 0.

Sollicitation Flèche Pente
Équation de la déformée
 

charge concentrée au milieu

 

 

 
 

charge concentrée en x = a

 (Référence nécessaire)

 
 

 
 

charge uniforme

 

 

 
 

charge linéaire décroissante q(x ) = q0(1 - x/L)

 

 

 
 

charge triangulaire symétrique

 

 

 
 

couple en B

 

 

 
 

couple en x = a

Poutre continue à deux travées égales

modifier
Sollicitation Flèche Pente
Équation de la déformée
 

charge concentrée au milieu d'une travée

[[Image: poutre
charge]]

Problèmes hyperstatiques de degré 2

modifier

Poutre bi-encastrée

modifier

La poutre est encastrée en A et en B, on a toujours θA = θB = 0.

Sollicitation Flèche
Équation de la déformée
 

charge concentrée au centre

 

 

 

charge excentrée (p. ex. charge roulante)

 
 

charge uniforme

 

 

 

Notes et références

modifier
  1. norme RTE EDF Transport — Réseau de transport de l'électricité
  2. « Déformations des éléments de structure », sur NotionsStructures.be (consulté le 11 janvier 2024).

Voir aussi

modifier