Physique quantique

La mécanique quantique constitue le pilier d'un ensemble de théories physiques qu'on regroupe sous l'appellation générale de physique quantique. Cette dénomination s'oppose à celle de physique classique, celle-ci échouant dans sa description du monde microscopique (atomes et particules) ainsi que dans celle de certaines propriétés du rayonnement électromagnétique.


IntroductionModifier

En mécanique quantique, une particule n'est pas décrite par sa position et sa vitesse mais par une fonction de l'espace et du temps à valeur dans les complexes dont le module carré a une interprétation de densité de probablilité.

Pour en comprendre l'origine, il faut s'intéresser à la structure hamiltonienne des équations classiques qui est préservée en mécanique quantique. Une formulation mathématique du passage d'une théorie classique à une théorie quantique (« principe de correspondance »), est morphisme de C*-algèbre.

L´idée de morphisme (cf. homomorphisme) exprime la ressemblance entre deux ensembles. Dans notre cas, l'algèbre en question est l'algèbre des observables, c´est de manière très génerale les quantités qui peuvent être mesurées. Dans le cadre de systèmes dynamiques hamiltoniens ces observables sont l´algèbre de fonctions (à valeur réelles) de l´espace de phase. Cette idée de morphisme est fondamentale, de manière heuristique elle pointe précisément ce qui en mécanique quantique ressemble à la mécanique classique. Les problèmes du spectre et de la stabilité même des atomes ont montré les limites de la physique classique mais ses succès signifient bien qu´elle contient quelque chose de valide, a partir de laquelle s´est construit la mécanique quantique.

On peut par ailleurs aussi motiver l´introduction de la structure d´algèbre, en considérant un système symétrique sous l'action des rotations (cf. symmetries), le théorème de Noether (cf. système dynamique lagrangien) permet de définir une quantité conservée, le moment cinétique . Les trois générateurs du groupe de rotation sont les opérateurs spin à un coefficient   près, ce sont trois vecteurs d'une algèbre de Lie. Cette structure d´algèbre de Lie se définit bien sur indépendament de la physique, mais ce qu´il faut remarquer c´est que le groupe de symmetrie ne correspond pas à quelque chose de mesurable physiquement mais les vecteurs de l´algèbre de Lie si. Cet exemple relie symetrie à une structure particulière d´algèbre (cf. algèbre associative, algèbre non associative), qui cependant n´est valable que si la symétrie est vérifiée. Dirac a introduit l´idée de quantification parfaite autour de la structure d´algèbre de Poisson.

Le comportement quantiqueModifier

Expérience avec des particulesModifier

Expérience avec des ondesModifier

Expérience avec des électronsModifier

Premiers principes de la mécanique quantiqueModifier

Le principe d'indéterminationModifier

Ondes ou particules ? : QuantonsModifier

Amplitudes de probabilitésModifier

Mesure de la position et de l'impulsionModifier

DiffractionModifier

La dimension d'un atomeModifier

Les niveaux d'énergieModifier

Système de particules identiquesModifier

Bosons et FermionsModifier

Etats à 2 bosonsModifier

Etats à n bosonsModifier

Emission et absorption de photonsModifier

Le spectre du corps noirModifier

L'hélium liquideModifier

Le principe d'exclusion de PauliModifier

Le spinModifier

Le spin est une observable prenant des valeurs demi-entières positives. 2s+1, où s est la valeur du spin, est la dimension de la représentation du groupe de rotation SO(3).

L'expérience de Stern et GerlachModifier

Etats d'un système quantiqueModifier

TransformationsModifier

Rotations autour de ZModifier

Rotations autour de YModifier

Rotations autour de XModifier

Dépendances temporellesModifier

Etats stationnairesModifier

Mouvement uniformeModifier

Energie potentielle et conservation de l'énergieModifier

Les forcesModifier

Le HamiltonienModifier

Amplitudes et vecteurs d'étatModifier

Résolution des vecteurs d'étatModifier

Evolution temporelle des états quantiquesModifier

La matrice HamiltonienModifier

Systèmes quantiques à 2 étatsModifier

L'Equation de SchrödingerModifier

 


L'Equation de Klein GordonModifier

 

L'Equation de DiracModifier

L'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron. Il s'agit au départ d'une tentative pour incorporer la relativité restreinte à des modèles quantiques, avec une écriture linéaire en la masse et l'impulsion.

 

Symétries et lois de conservationModifier

Une première formulation est la commutation de l´évolution temporelle et d´une transformation que l´on appelle alors symétrie.

(faire un diagramme commutatif...) Dans l´exemple de la symétrie par rotation, le diagramme exprime que si on tourne un système puis on regarde son évolution, on aboutit au même système que si on le fait évolution puis on le tourne.

-transformation Active/ Passive

Une remarque que l´on peut faire au sujet de cette définition de symétrie est le rôle particulier du temps, étant sous entendu que l´évolution se fait dans le temps. Il existe d´autres définitions de symétrie utilisant l´idée de localité.

RéférencesModifier

Quantum mechanics for mathematicians, Leon A. Takhtajan. Livre tres original qui insiste sur les structures mathématiques de la physique quantique, et dont les premiers chapitres sont accessibles http://www.math.sunysb.edu/~leontak/570-S06/ChapterI-II.pdf ou directement sur le site de AMS.