Mathc matrices/cq054
Sommaire ◀ Utilise la commande "Retour en Arrière" de ton navigateur.
Installer et compiler ces fichiers dans votre répertoire de travail.
c01c.c |
---|
/* ------------------------------------ */
/* Save as : c01c.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C3
/* ------------------------------------ */
#define FACTOR_E +1.E-0
/* ------------------------------------ */
void fun(void)
{
double tA[RA*CA]={
/* x**0 x**1 x**2 */
1, .1, .01,
1, .2, .04,
1, .3, .09,
1, .4, .16,
1, .5, .25
};
double tb[RA*C1]={
/* y */
-0.19,
0.32,
1.04,
2.47,
3.74
};
double **A = ca_A_mR(tA,i_mR(RA,CA));
double **b = ca_A_mR(tb,i_mR(RA,C1));
double **Pinv = i_mR(CA,RA);
double **Pinvb = i_mR(CA,C1);
clrscrn();
printf(" Fitting a linear Curve to Data :\n\n");
printf(" A :");
p_mR(A,S5,P2,C7);
printf(" b :");
p_mR(b,S5,P2,C7);
printf(" Pinv = V * invS_T * U_T ");
Pinv_Rn_mR(A,Pinv,FACTOR_E);
pE_mR(Pinv,S12,P4,C10);
stop();
clrscrn();
printf(" x = Pinv * b ");
mul_mR(Pinv,b,Pinvb);
p_mR(Pinvb,S10,P4,C10);
printf(" The Quadratic Curve to Data : \n\n"
" s = %+.2f %+.2f*t %+.2f*t**2\n\n"
,Pinvb[R1][C1],Pinvb[R2][C1],Pinvb[R3][C1]);
stop();
f_mR(b);
f_mR(A);
f_mR(Pinv);
f_mR(Pinvb);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
-----------------------------------
Fitting a linear Curve to Data :
A :
+1.00 +0.10 +0.01
+1.00 +0.20 +0.04
+1.00 +0.30 +0.09
+1.00 +0.40 +0.16
+1.00 +0.50 +0.25
b :
-0.19
+0.32
+1.04
+2.47
+3.74
Pinv = V * invS_T * U_T
+1.8000 -0.0000 -0.8000 -0.6000 +0.6000
-10.5714 +3.2857 +8.5714 +5.2857 -6.5714
+14.2857 -7.1429 -14.2857 -7.1429 +14.2857
Press return to continue.
-----------------------------------
x = Pinv * b
-0.4120
+0.4529
+15.9286
The Quadratic Curve to Data :
s = -0.41 +0.45*t +15.93*t**2
Press return to continue.