Mathc matrices/c32c


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.


Crystal Clear mimetype source c.png c02a.c
'
/* ------------------------------------ */
/*  Save as :   c02a.c                  */
/* ------------------------------------ */
#include      "v_a.h"
/* ------------------------------------ */
int main(void)
{
double t[R3*C4]={ 1,0,0, 1,
                  0,1,0, 1,
                  0,0,1, 1};
                   
double **T  =    ca_A_mR(t,i_mR(R3,C4));
double **A  =        rE_mR(i_mR(R3,C3),999.,1E-3);  
double **AT =    mul_mR(A,T,i_mR(R3,C4));  
double **Ab = gj_TP_mR(c_mR(AT,i_Abr_Ac_bc_mR(R3,C3,C1)));  

  printf(" You want to create this nonlinear system of equations :\n");
  printf("               (A, B, C  [0..2pi])\n");
  printf("\n"); 
  printf(" a sin(A) + b sin(B) + c sin(C) = d\n");
  printf(" e sin(A) + f sin(B) + g sin(C) = h\n");
  printf(" i sin(A) + j sin(B) + k sin(C) = l\n");
  printf("\n");
  printf(" With sin(A) = 1, sin(B) = 1, sin(C) = 1 \n");
  printf("\n");
  printf(" In  fact, you  want to  find a  matrix, \n");
  printf(" which has this reduced row-echelon form :\n\n");
   
  p_mR(T,S5,P0,C6);
  getchar();

  printf(" I suggest this matrix : \n");
  p_mR(AT,S5,P3,C6);
  getchar();
  
  printf("\n  With the Gauss Jordan function :\n");
  p_mR(Ab,S5,P3,C6);
  getchar();

  f_mR(Ab);
  f_mR(A);
  f_mR(T);
  f_mR(AT);

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Le but de ce travail est de créer des systèmes dont on connait le résultat par avance.


Exemple de sortie écran :
 You want to create this nonlinear system of equations :
               (A, B, C  [0..2pi])

 a sin(A) + b sin(B) + c sin(C) = d
 e sin(A) + f sin(B) + g sin(C) = h
 i sin(A) + j sin(B) + k sin(C) = l

 With sin(A) = 1, sin(B) = 1, sin(C) = 1 

 In  fact, you  want to  find a  matrix, 
 which has this reduced row-echelon form :


   +1    +0    +0    +1 
   +0    +1    +0    +1 
   +0    +0    +1    +1 


 I suggest this matrix : 

-0.479 -0.665 +0.154 -0.990 
-0.269 -0.501 +0.998 +0.228 
+0.992 +0.904 -0.763 +1.133 



  With the Gauss Jordan function :

+1.000 +0.000 -0.000 +1.000 
+0.000 +1.000 +0.000 +1.000 
-0.000 +0.000 +1.000 +1.000