Mathc matrices/c32a
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
double ta[R2*C3]={ 1,0, 1,
0,1, 2};
double **T = ca_A_mR(ta, i_mR(R2,C3));
double **A = r_mR( i_mR(R2,C2),999.);
double **AT = mul_mR(A,T, i_mR(R2,C3));
double **Ab = gj_TP_mR(c_mR(AT, i_Abr_Ac_bc_mR(R2,C2,C1)));
clrscrn();
printf(" Find a matrice, that has this reduced row-echelon form :\n\n"
" Ab : ");
p_mR(T,S5,P0,C6);
stop();
clrscrn();
printf(" If :\n\n A = r_mR(i_mR(R2,C2),999.)");
p_mR(A,S5,P0,C6);
printf(" And :\n\n T :");
p_mR(T,S5,P0,C6);
printf(" I suggest this matrix : A*T = Ab\n\n"
" Ab : ");
p_mR(AT,S5,P0,C6);
stop();
clrscrn();
printf("\n With the Gauss Jordan function :\n\n Ab :");
p_mR(Ab,S10,P5,C7);
stop();
f_mR(Ab);
f_mR(A);
f_mR(T);
f_mR(AT);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Le but de ce travail est de créer des systèmes dont on connait le résultat par avance.
La méthode de calcul :
---------------------------------
Find a matrice, that has this reduced row-echelon form :
Ab :
+1 +0 +1
+0 +1 +2
Press return to continue.
---------------------------------
If :
A = r_mR(i_mR(R2,C2),999.)
+479 -154
-501 +992
And :
T :
+1 +0 +1
+0 +1 +2
I suggest this matrix : A*T = Ab
Ab :
+479 -154 +171
-501 +992 +1483
Press return to continue.
---------------------------------
With the Gauss Jordan function :
Ab :
+1.00000 +0.00000 +1.00000
+0.00000 +1.00000 +2.00000
Press return to continue.