SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer et compiler ces fichiers dans votre répertoire de travail.

c01.c
/* ------------------------------------ */
/*  Save as :   c01.c                   */
/* ------------------------------------ */
#include "v_a.h"
#include "d.h"
/* ------------------------------------ */
int main(void)
{
double xy[6] ={
   1,     -2,
   2,     -3,
   3,      6    };

double **XY =  ca_A_mR(xy,i_mR(R3,C2));
double **A =            i_mR(R5,C5);
double **b =             i_mR(R5,C1);
double **Ab =  i_Abr_Ac_bc_mR(R5,C5,C1);

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d,  of a circle  \n\n");
  printf("     ax**2 + ay**2 + bx + cy + d  = 0            \n\n");
  printf(" that passes through these three XY.         \n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf("\n");
  printf(" Using the given XY, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");
  printf("   x**2    y**2    x       y      ");
  i_A_b_with_XY_mR(XY,A,b);
  c_A_b_Ab_mR(A,b,Ab);
  p_mR(Ab,S7,P2,C6);
  stop();

  clrscrn();
  printf(" The Gauss Jordan process will reduce this matrix to : \n");
  gj_TP_mR(Ab);
  p_mR(Ab,S7,P2,C6);
  printf(" The coefficients a, b, c, d, e, of the curve are :  \n\n");
  p_eq_circle_mR(Ab);
  stop();

  clrscrn();
  printf("    x     y \n");
  p_mR(XY,S5,P0,C6);
  printf("\n");
  printf(" Verify the result : \n\n");
  verify_XY_mR(Ab,XY[R1][C1],XY[R1][C2]);
  verify_XY_mR(Ab,XY[R2][C1],XY[R2][C2]);
  verify_XY_mR(Ab,XY[R3][C1],XY[R3][C2]);
  printf("\n\n\n");
  stop();

  f_mR(XY);
  f_mR(A);
  f_mR(b);
  f_mR(Ab);

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Exemple de sortie écran :
 ------------------------------------ 

 Find the coefficients a, b, c, d,  of a circle  

     ax**2 + ay**2 + bx + cy + d  = 0            

 that passes through these three points.         

    x     y
   +1    -2 
   +2    -3 
   +3    +6 


 Using the given points, we obtain this matrix.
  (a = 1. This is my choice)

   x**2    y**2    x       y      
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +0.00   +1.00   +0.00   +0.00   +0.00   +1.00 
  +1.00   +4.00   +1.00   -2.00   +1.00   +0.00 
  +4.00   +9.00   +2.00   -3.00   +1.00   +0.00 
  +9.00  +36.00   +3.00   +6.00   +1.00   +0.00 

 Press return to continue. 



 The Gauss Jordan process will reduce this matrix to : 

  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +0.00   +1.00   +0.00   +0.00   +0.00   +1.00 
  -0.00   -0.00   +1.00   -0.00   -0.00  -10.40 
  +0.00   +0.00   +0.00   +1.00   +0.00   -2.40 
  +0.00   +0.00   +0.00   +0.00   +1.00   +0.60 

 The coefficients a, b, c, d, e, of the curve are :  

   +1.00x**2    +1.00y**2    -10.40x    -2.40y    +0.60 = 0
 Press return to continue. 



    x     y 

   +1    -2 
   +2    -3 
   +3    +6 


 Verify the result : 

 With x =  +1.0 and  y =  -2.0  ax**2 + ay**2 + cx+ dy + e = +0.00000 
 With x =  +2.0 and  y =  -3.0  ax**2 + ay**2 + cx+ dy + e = +0.00000 
 With x =  +3.0 and  y =  +6.0  ax**2 + ay**2 + cx+ dy + e = -0.00000 
 Press return to continue.