Mathc matrices/c26a2
Installer et compiler ces fichiers dans votre répertoire de travail.
c02.c |
---|
/* ------------------------------------ */
/* Save as : c02.c */
/* ------------------------------------ */
#include "v_a.h"
#include "d.h"
/* --------------------------------- */
int main(void)
{
double xy[6] ={1, -9,
2, 8,
3, -8, };
double **XY = ca_A_mR(xy,i_mR(R3,C2));
double **A = i_mR(R3,C3);
double **b = i_mR(R3,C1);
double **Ab = i_Abr_Ac_bc_mR(R3,C3,C1);
clrscrn();
printf("\n");
printf(" Find the coefficients a, b, c of the curve \n\n");
printf(" y = ax**2 + bx + c (x**0 = 1) \n\n");
printf(" that passes through the points. \n\n");
printf(" x y \n");
p_mR(XY,S5,P0,C6);
printf("\n Using the given points, we obtain this matrix\n\n");
printf(" x**2 x**1 x**0 y\n");
i_A_b_with_XY_mR(XY,A,b);
c_A_b_Ab_mR(A,b,Ab);
p_mR(Ab,S7,P2,C6);
stop();
clrscrn();
printf(" The Gauss Jordan process will reduce this matrix to : \n");
gj_TP_mR(Ab);
p_mR(Ab,S7,P2,C6);
printf("\n The coefficients a, b, c of the curve are : \n\n");
p_eq_poly_mR(Ab);
stop();
clrscrn();
printf(" x y \n");
p_mR(XY,S5,P0,C6);
printf("\n");
printf(" Verify the result : \n\n");
verify_X_mR(Ab,XY[R1][C1]);
verify_X_mR(Ab,XY[R2][C1]);
verify_X_mR(Ab,XY[R3][C1]);
printf("\n\n\n");
stop();
f_mR(XY);
f_mR(A);
f_mR(b);
f_mR(Ab);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
------------------------------------
Find the coefficients a, b, c of the curve
y = ax**2 + bx + c (x**0 = 1)
that passes through the points.
x y
+1 -9
+2 +8
+3 -8
Using the given points, we obtain this matrix
x**2 x**1 x**0 y
+1.00 +1.00 +1.00 -9.00
+4.00 +2.00 +1.00 +8.00
+9.00 +3.00 +1.00 -8.00
Press return to continue.
The Gauss Jordan process will reduce this matrix to :
+1.00 +0.00 +0.00 -16.50
+0.00 +1.00 +0.00 +66.50
+0.00 +0.00 +1.00 -59.00
The coefficients a, b, c of the curve are :
y = -16.500x**2 +66.500x -59.000
Press return to continue.
x y
+1 -9
+2 +8
+3 -8
Verify the result :
With x = +1.000, y = -9.000
With x = +2.000, y = +8.000
With x = +3.000, y = -8.000
Press return to continue.