SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer et compiler ces fichiers dans votre répertoire de travail.


c00r.c
/* ------------------------------------ */
/*  Save as :   c00r.c                   */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double xy[6] ={
   1,     -2,
   2,     -3,
   3,      6    };

   
double ab[RA*(CA+Cb)]={
/* x**2     y**2     x        y        e    =   0   */
  +1.00,   +0.00,   +0.00,   +0.00,   +0.00,   +1.00, 
  +0.00,   +1.00,   +0.00,   +0.00,   +0.00,   +1.00, 
  +1.00,   +4.00,   +1.00,   -2.00,   +1.00,   +0.00, 
  +4.00,   +9.00,   +2.00,   -3.00,   +1.00,   +0.00, 
  +9.00,  +36.00,   +3.00,   +6.00,   +1.00,   +0.00, 
};

double **XY = ca_A_mR(xy,i_mR(R3,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d,  of a circle  \n\n");
  printf("     ax**2 + ay**2 + bx + cy + d  = 0            \n\n");
  printf(" that passes through these three XY.         \n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf("\n");
  printf(" Using the given XY, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");
  printf("   x**2    y**2    x       y      ");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  inv_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
         "  %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 
}
/* ------------------------------------ */
int main(void)
{
	
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


 Calculons les coefficients a, b, c, d d'un cercle,
      
      ax**2 + ay**2 + bx + cy + d  = 0 
       Qui passe par ces trois points.    
         
      (x[1],y[1])  (x[2],y[2])  (x[3],y[3])  
 En utilisant ces trois points nous avons cette matrice.
 (a)x**2   (a)y**2   (b)x      (c)y        (d) = 0               
    x[1]**2   y[1]**2   x[1]      y[1]      1    0
    x[2]**2   y[2]**2   x[2]      y[2]      1    0
    x[3]**2   y[3]**2   x[3]      y[3]      1    0
 Ce système a trois lignes et quatre inconnues.
 Il est homogène, donc il a une infinité de solution.
 Pour trouver une solution j'ai choisi que a = 1.
 Nous obtenons cette matrice.
 (a)x**2   (a)y**2         
    1         0         0         0         0    1  
    0         1         0         0         0    1 
    x[1]**2   y[1]**2   x[1]      y[1]      1    0 
    x[2]**2   y[2]**2   x[2]      y[2]      1    0 
    x[3]**2   y[3]**2   x[3]      y[3]      1    0 
Il suffit de resoudre le système.


Exemple de sortie écran :
  -----------------------------------
 Find the coefficients a, b, c, d,  of a circle  

     ax**2 + ay**2 + bx + cy + d  = 0            

 that passes through these three XY.         

    x     y
   +1    -2 
   +2    -3 
   +3    +6 


 Using the given XY, we obtain this matrix.
  (a = 1. This is my choice)

   x**2    y**2    x       y      
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +0.00   +1.00   +0.00   +0.00   +0.00   +1.00 
  +1.00   +4.00   +1.00   -2.00   +1.00   +0.00 
  +4.00   +9.00   +2.00   -3.00   +1.00   +0.00 
  +9.00  +36.00   +3.00   +6.00   +1.00   +0.00 

 Press return to continue. 


  -----------------------------------
 Q :
   +0.1005    -0.4928    -0.5780    -0.3248    +0.5544 
   +0.0000    +0.1340    +0.0472    -0.9182    -0.3696 
   +0.1005    +0.0433    +0.7229    -0.2169    +0.6468 
   +0.4020    -0.7650    +0.3370    +0.0544    -0.3696 
   +0.9045    +0.3899    -0.1659    +0.0360    +0.0308 

 R :
   +9.9499   +36.5834    +3.6181    +4.0202    +1.4071 
   -0.0000    +7.4603    -0.3168    +4.5480    -0.3317 
   -0.0000    -0.0000    +0.8993    -3.4522    +0.8940 
   +0.0000    +0.0000    -0.0000    +0.4863    -0.1264 
   +0.0000    +0.0000    +0.0000    +0.0000    +0.3080 

 Press return to continue. 


  -----------------------------------
 Q_T :
 +1.0050e-01  +0.0000e+00  +1.0050e-01  +4.0202e-01  +9.0453e-01 
 -4.9284e-01  +1.3404e-01  +4.3327e-02  -7.6499e-01  +3.8994e-01 
 -5.7800e-01  +4.7225e-02  +7.2290e-01  +3.3703e-01  -1.6589e-01 
 -3.2485e-01  -9.1825e-01  -2.1687e-01  +5.4449e-02  +3.5992e-02 
 +5.5444e-01  -3.6962e-01  +6.4684e-01  -3.6962e-01  +3.0802e-02 

 invR :
 +1.0050e-01  -4.9284e-01  -5.7800e-01  -3.2485e-01  +5.5444e-01 
 +0.0000e+00  +1.3404e-01  +4.7225e-02  -9.1825e-01  -3.6962e-01 
 -0.0000e+00  +0.0000e+00  +1.1120e+00  +7.8932e+00  +1.2321e-02 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  +2.0561e+00  +8.4398e-01 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  -0.0000e+00  +3.2465e+00 

 Press return to continue. 


  -----------------------------------
 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +1.00 
     +1.00 
    -10.40 
     -2.40 
     +0.60 

 The coefficients a, b, c, d, e, of the curve are : 

  +1.00x**2 +1.00y**2 -10.40x -2.40y +0.60 = 0

 Press return to continue.