SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer et compiler ces fichiers dans votre répertoire de travail.


c00o.c
/* ------------------------------------ */
/*  Save as :   c00o.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double   xy[8] ={
   1,      1,
   2,      4,
   3,      9,
   4,     16  };

   
double ab[RA*(CA+Cb)]={
/* x**2     y**2     x        y        e    =   0   */
  +1.00,   +0.00,   +0.00,   +0.00,   +0.00,   +1.00, 
  +1.00,   +1.00,   +1.00,   +1.00,   +1.00,   +0.00, 
  +4.00,  +16.00,   +2.00,   +4.00,   +1.00,   +0.00, 
  +9.00,  +81.00,   +3.00,   +9.00,   +1.00,   +0.00, 
 +16.00, +256.00,   +4.00,  +16.00,   +1.00,   +0.00 
};

double **XY = ca_A_mR(xy,i_mR(R4,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d, e, of the curve \n\n");
  printf("     ax**2 + by**2 + cx + dy + e  = 0 \n\n");
  printf(" that passes through these four points.\n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf(" Using the given points, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");  
  printf(" Ab :\n");
  printf("   x**2    y**2    x       y       e    =  0     ");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  inv_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
         "  %+.2fx**2  %+.2fy  = 0\n\n"
            ,x[R1][C1],x[R4][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 
}
/* ------------------------------------ */
int main(void)
{
	
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


 Trouver les coefficients a, b, c, d, e du conique,
      
      ax**2 + by**2 + cx + dy + e  = 0 
       qui passe par ces quatre points.    
         
      (x[1],y[1])  (x[2],y[2])  (x[3],y[3])  (x[4],y[4]) 
 En utilisant les quatre points nous obtenons la matrice.
 (a)x**2   (b)y**2   (c)x      (d)y        (e) = 0               
    x[1]**2   y[1]**2   x[1]      y[1]      1    0
    x[2]**2   y[2]**2   x[2]      y[2]      1    0
    x[3]**2   y[3]**2   x[3]      y[3]      1    0
    x[4]**2   y[4]**2   x[4]      y[4]      1    0
 Ce système à quatre lignes et cinq inconnus (a, b, c, d, e).
 C'est un système homogène, il a donc une infinité de solution.

 Pour trouver une solution j'ai choisi de poser que a = 1.
 Nous avons donc cinq lignes et cinq inconnus.

    1         0         0         0         0    1 
    x[1]**2   y[1]**2   x[1]      y[1]      1    0 
    x[2]**2   y[2]**2   x[2]      y[2]      1    0 
    x[3]**2   y[3]**2   x[3]      y[3]      1    0 
    x[4]**2   y[4]**2   x[4]      y[4]      1    0 


 Il suffit maintenant de résoudre le système. 


Exemple de sortie écran :
  -----------------------------------
 Find the coefficients a, b, c, d, e, of the curve 

     ax**2 + by**2 + cx + dy + e  = 0 

 that passes through these four points.

    x     y
   +1    +1 
   +2    +4 
   +3    +9 
   +4   +16 

 Using the given points, we obtain this matrix.
  (a = 1. This is my choice)

 Ab :
   x**2    y**2    x       y       e    =  0     
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +1.00   +1.00   +1.00   +1.00   +1.00   +0.00 
  +4.00  +16.00   +2.00   +4.00   +1.00   +0.00 
  +9.00  +81.00   +3.00   +9.00   +1.00   +0.00 
 +16.00 +256.00   +4.00  +16.00   +1.00   +0.00 

 Press return to continue. 



  -----------------------------------
 Q :
   +0.0531    -0.1949    -0.6241    -0.7548    +0.0000 
   +0.0531    -0.1807    +0.6555    -0.4915    +0.5415 
   +0.2123    -0.5532    +0.3364    -0.1204    -0.7220 
   +0.4777    -0.6080    -0.2539    +0.4005    +0.4212 
   +0.8492    +0.5037    +0.0568    -0.1173    -0.0902 

 R :
  +18.8414  +259.5343    +5.3074   +18.7884    +1.5922 
   +0.0000   +70.6822    -1.0960    +0.1949    -0.8381 
   -0.0000    -0.0000    +0.7936    +0.6241    +0.7948 
   +0.0000    +0.0000    +0.0000    +0.7548    -0.3287 
   +0.0000    +0.0000    +0.0000    +0.0000    +0.1504 

 Press return to continue. 


  -----------------------------------
 Q_T :
 +5.3074e-02  +5.3074e-02  +2.1230e-01  +4.7767e-01  +8.4919e-01 
 -1.9488e-01  -1.8073e-01  -5.5316e-01  -6.0796e-01  +5.0374e-01 
 -6.2405e-01  +6.5551e-01  +3.3642e-01  -2.5391e-01  +5.6750e-02 
 -7.5483e-01  -4.9155e-01  -1.2040e-01  +4.0047e-01  -1.1727e-01 
 +3.1923e-14  +5.4149e-01  -7.2199e-01  +4.2116e-01  -9.0249e-02 

 invR :
 +5.3074e-02  -1.9488e-01  -6.2405e-01  -7.5483e-01  -0.0000e+00 
 +0.0000e+00  +1.4148e-02  +1.9537e-02  -1.9805e-02  -6.7686e-02 
 +0.0000e+00  -0.0000e+00  +1.2600e+00  -1.0417e+00  -8.9346e+00 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  +1.3248e+00  +2.8955e+00 
 -0.0000e+00  +0.0000e+00  -0.0000e+00  -0.0000e+00  +6.6483e+00 

 Press return to continue. 


  -----------------------------------
 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +1.00 
     -0.00 
     -0.00 
     -1.00 
     +0.00 

 The coefficients a, b, c, d, e, of the curve are : 

  +1.00x**2  -1.00y  = 0

 Press return to continue.