SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer et compiler ces fichiers dans votre répertoire de travail.


c00l.c
/* ------------------------------------ */
/*  Save as :   c00l.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*(CA+Cb)]={
/* x**0   x**1   x**2    x**3    x**4     y  */
   1,     1.,     1.,       1.,     1.,  -5.,
   1,     2.,     4.,       8.,    16.,   8.,
   1,     3.,     9.,      27.,    81.,  -7.,
   1,     4.,    16.,      64.,   256.,   1.,
   1,     5.,    25.,     125.,   625.,  -4.,
};

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **A_T        = i_mR(CA,RA);
double **A_TA       = i_mR(CA,CA); //         A_T*A
double **invA_TA    = i_mR(CA,CA); //     inv(A_T*A)
double **invA_TAA_T = i_mR(CA,RA); //     inv(A_T*A)*A_T

double **x          = i_mR(CA,Cb); // x = inv(A_T*A)*A_T*b

  clrscrn();
  printf(" Fitting a Quartic equation Curve to Data :\n\n");
  printf(" A :");
  p_mR(A,S10,P2,C7);
  printf(" b :");
  p_mR(b,S10,P2,C7);
  printf(" Ab :");
  p_mR(Ab,S10,P2,C7);
  stop();
  
  clrscrn();
  printf(" A_T :");
  p_mR(transpose_mR(A,A_T),S10,P2,C7);
  printf(" A_TA :");
  p_mR(mul_mR(A_T,A,A_TA),S10,P2,C7);
  printf(" inv(A_TA) :");
  p_mR(inv_mR(A_TA,invA_TA),S10,P4,C7);
  stop();
  
  clrscrn();  
  printf(" inv(A_TA)*A_T :");
  p_mR(mul_mR(invA_TA,A_T,invA_TAA_T),S10,P4,C7);
  printf("\n x = inv(A_TA)*A_T*b :");
  p_mR(mul_mR(invA_TAA_T,b,x),S10,P4,C7);
  stop();
  
  clrscrn();
  printf("\n x = inv(A_TA)*A_T*b :");
  p_mR(x,S10,P2,C7); 
  printf(" The Quartic equation Curve to Data : \n\n"
         "  s = %+.3f %+.3f*t %+.3f*t**2 %+.3f*t**3 %+.3f*t**4\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);     
  stop();  
  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);

  f_mR(A_T);
  f_mR(A_TA);       //         A_T*A
  f_mR(invA_TA);    //     inv(A_T*A)
  f_mR(invA_TAA_T); //     inv(A_T*A)*A_T
    
  f_mR(x); 
}
/* ------------------------------------ */
int main(void)
{
	
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Trouver la meilleur équation quartique qui s'ajuste au mieux aux points donnés.


Exemple de sortie écran :
  -----------------------------------
 Fitting a Quartic equation Curve to Data :

 A :
     +1.00      +1.00      +1.00      +1.00      +1.00 
     +1.00      +2.00      +4.00      +8.00     +16.00 
     +1.00      +3.00      +9.00     +27.00     +81.00 
     +1.00      +4.00     +16.00     +64.00    +256.00 
     +1.00      +5.00     +25.00    +125.00    +625.00 

 b :
     -5.00 
     +8.00 
     -7.00 
     +1.00 
     -4.00 

 Ab :
     +1.00      +1.00      +1.00      +1.00      +1.00      -5.00 
     +1.00      +2.00      +4.00      +8.00     +16.00      +8.00 
     +1.00      +3.00      +9.00     +27.00     +81.00      -7.00 
     +1.00      +4.00     +16.00     +64.00    +256.00      +1.00 
     +1.00      +5.00     +25.00    +125.00    +625.00      -4.00 

 Press return to continue. 


  -----------------------------------
 A_T :
     +1.00      +1.00      +1.00      +1.00      +1.00 
     +1.00      +2.00      +3.00      +4.00      +5.00 
     +1.00      +4.00      +9.00     +16.00     +25.00 
     +1.00      +8.00     +27.00     +64.00    +125.00 
     +1.00     +16.00     +81.00    +256.00    +625.00 

 A_TA :
     +5.00     +15.00     +55.00    +225.00    +979.00 
    +15.00     +55.00    +225.00    +979.00   +4425.00 
    +55.00    +225.00    +979.00   +4425.00  +20515.00 
   +225.00    +979.00   +4425.00  +20515.00  +96825.00 
   +979.00   +4425.00  +20515.00  +96825.00 +462979.00 

 inv(A_TA) :
 +251.0000  -458.3333  +271.2500   -64.1667    +5.2500 
 -458.3333  +847.1528  -505.7292  +120.3889    -9.8958 
 +271.2500  -505.7292  +304.3299   -72.9167    +6.0243 
  -64.1667  +120.3889   -72.9167   +17.5694    -1.4583 
   +5.2500    -9.8958    +6.0243    -1.4583    +0.1215 

 Press return to continue. 


  -----------------------------------
 inv(A_TA)*A_T :
   +5.0000   -10.0000   +10.0000    -5.0000    +1.0000 
   -6.4167   +17.8333   -19.5000   +10.1667    -2.0833 
   +2.9583    -9.8333   +12.2500    -6.8333    +1.4583 
   -0.5833    +2.1667    -3.0000    +1.8333    -0.4167 
   +0.0417    -0.1667    +0.2500    -0.1667    +0.0417 


 x = inv(A_TA)*A_T*b :
 -184.0000 
 +329.7500 
 -191.8750 
  +44.7500 
   -3.6250 

 Press return to continue. 



  -----------------------------------
 x = inv(A_TA)*A_T*b :
   -184.00 
   +329.75 
   -191.88 
    +44.75 
     -3.63 

 The Quartic equation Curve to Data : 

  s = -184.000 +329.750*t -191.875*t**2 +44.750*t**3 -3.625*t**4