SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer et compiler ces fichiers dans votre répertoire de travail.


c00k.c
/* ------------------------------------ */
/*  Save as :   c00k.c                   */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*(CA+Cb)]={
/* x**0   x**1   x**2    x**3    x**4    y  */
   1,     1.,    1.,      1.,      1.,  -5.,
   1,     2.,    4.,      8.,     16.,   8.,
   1,     3.,    9.,     27.,     81.,  -7.,
   1,     4.,   16.,     64.,    256.,   1.,
   1,     5.,   25.,    125.,    625.,  -4.,
};

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x invR * Q_T * b

  clrscrn();
  printf(" Fitting a quartic equation Curve to Data :\n\n");
  printf(" A :");
  p_mR(A,S7,P2,C7);
  printf(" b :");
  p_mR(b,S7,P2,C7);
  printf(" Ab :");
  p_mR(Ab,S7,P2,C7);
  stop();
    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6);  
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S7,P4,C6); 
  inv_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S7,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf(" The Quartic equation Curve to Data : \n\n"
         "  s = %+.3f %+.3f*t %+.3f*t**2 %+.3f*t**3 %+.3f*t**4\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);  
  
  stop();
  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 
}
/* ------------------------------------ */
int main(void)
{
	
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Trouver la meilleur équation quartique qui s'ajuste au mieux aux points donnés.


Exemple de sortie écran :
  -----------------------------------
 Fitting a quartic equation Curve to Data :

 A :
  +1.00   +1.00   +1.00   +1.00   +1.00 
  +1.00   +2.00   +4.00   +8.00  +16.00 
  +1.00   +3.00   +9.00  +27.00  +81.00 
  +1.00   +4.00  +16.00  +64.00 +256.00 
  +1.00   +5.00  +25.00 +125.00 +625.00 

 b :
  -5.00 
  +8.00 
  -7.00 
  +1.00 
  -4.00 

 Ab :
  +1.00   +1.00   +1.00   +1.00   +1.00   -5.00 
  +1.00   +2.00   +4.00   +8.00  +16.00   +8.00 
  +1.00   +3.00   +9.00  +27.00  +81.00   -7.00 
  +1.00   +4.00  +16.00  +64.00 +256.00   +1.00 
  +1.00   +5.00  +25.00 +125.00 +625.00   -4.00 

 Press return to continue. 


  -----------------------------------
 Q :
   +0.4472    -0.6325    +0.5345    -0.3162    +0.1195 
   +0.4472    -0.3162    -0.2673    +0.6325    -0.4781 
   +0.4472    +0.0000    -0.5345    +0.0000    +0.7171 
   +0.4472    +0.3162    -0.2673    -0.6325    -0.4781 
   +0.4472    +0.6325    +0.5345    +0.3162    +0.1195 

 R :
   +2.2361    +6.7082   +24.5967  +100.6231  +437.8221 
   +0.0000    +3.1623   +18.9737   +96.1332  +470.5469 
   +0.0000    +0.0000    +3.7417   +33.6749  +218.6197 
   +0.0000    +0.0000    +0.0000    +3.7947   +45.5368 
   -0.0000    -0.0000    -0.0000    -0.0000    +2.8685 

 Press return to continue. 


  -----------------------------------
 Q_T :
+4.4721e-01 +4.4721e-01 +4.4721e-01 +4.4721e-01 +4.4721e-01 
-6.3246e-01 -3.1623e-01 +0.0000e+00 +3.1623e-01 +6.3246e-01 
+5.3452e-01 -2.6726e-01 -5.3452e-01 -2.6726e-01 +5.3452e-01 
-3.1623e-01 +6.3246e-01 +0.0000e+00 -6.3246e-01 +3.1623e-01 
+1.1952e-01 -4.7809e-01 +7.1714e-01 -4.7809e-01 +1.1952e-01 

 invR :
+4.4721e-01 -9.4868e-01 +1.8708e+00 -4.4272e+00 +1.5060e+01 
+0.0000e+00 +3.1623e-01 -1.6036e+00 +6.2191e+00 -2.8387e+01 
-0.0000e+00 +0.0000e+00 +2.6726e-01 -2.3717e+00 +1.7281e+01 
+0.0000e+00 -0.0000e+00 +0.0000e+00 +2.6352e-01 -4.1833e+00 
-0.0000e+00 +0.0000e+00 -0.0000e+00 -0.0000e+00 +3.4861e-01 

 Press return to continue. 


  -----------------------------------
 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
   -184.00 
   +329.75 
   -191.87 
    +44.75 
     -3.63 

 The Quartic equation Curve to Data : 

  s = -184.000 +329.750*t -191.875*t**2 +44.750*t**3 -3.625*t**4

 Press return to continue.