Mathc matrices/c22z
Sommaire ◀ Utilise la commande "Retour en Arrière" de ton navigateur.
Installer et compiler ces fichiers dans votre répertoire de travail.
c00i.c |
---|
/* ------------------------------------ */
/* Save as : c00i.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C4
#define Cb C1
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*(CA+Cb)]={
/* x**0 x**1 x**2 x**3 y */
1, -5., +25., -125., -3.00,
1, -2., +4., -8., +0.00,
1, +2., +4., +8., +3.00,
1, +3., +9., +27., -2.00,
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab,i_mR(RA,Cb));
double **Q = i_mR(RA,CA);
double **R = i_mR(CA,CA);
double **invR = i_mR(CA,CA);
double **Q_T = i_mR(CA,RA);
double **invR_Q_T = i_mR(CA,RA);
double **x = i_mR(CA,Cb); // x invR * Q_T * b
clrscrn();
printf(" Fitting a Cubic equation Curve to Data :\n\n");
printf(" A :");
p_mR(A,S7,P2,C7);
printf(" b :");
p_mR(b,S7,P2,C7);
printf(" Ab :");
p_mR(Ab,S7,P2,C7);
stop();
clrscrn();
QR_mR(A,Q,R);
printf(" Q :");
p_mR(Q,S10,P4,C6);
printf(" R :");
p_mR(R,S10,P4,C6);
stop();
clrscrn();
transpose_mR(Q,Q_T);
printf(" Q_T :");
pE_mR(Q_T,S7,P4,C6);
inv_mR(R,invR);
printf(" invR :");
pE_mR(invR,S7,P4,C6);
stop();
clrscrn();
printf(" Solving this system yields a unique\n"
" least squares solution, namely \n\n");
mul_mR(invR,Q_T,invR_Q_T);
mul_mR(invR_Q_T,b,x);
printf(" x = invR * Q_T * b :");
p_mR(x,S10,P2,C6);
printf(" The Cubic equation Curve to Data : \n\n"
" s = %+.3f %+.3f*t %+.3f*t**2 %+.3f*t**2\n\n"
,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1]);
stop();
f_mR(A);
f_mR(b);
f_mR(Ab);
f_mR(Q);
f_mR(Q_T);
f_mR(R);
f_mR(invR);
f_mR(invR_Q_T);
f_mR(x);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Trouver la meilleur équation cubique qui s'ajuste au mieux aux points donnés.
Exemple de sortie écran :
-----------------------------------
Fitting a Cubic equation Curve to Data :
A :
+1.00 -5.00 +25.00 -125.00
+1.00 -2.00 +4.00 -8.00
+1.00 +2.00 +4.00 +8.00
+1.00 +3.00 +9.00 +27.00
b :
-3.00
+0.00
+3.00
-2.00
Ab :
+1.00 -5.00 +25.00 -125.00 -3.00
+1.00 -2.00 +4.00 -8.00 +0.00
+1.00 +2.00 +4.00 +8.00 +3.00
+1.00 +3.00 +9.00 +27.00 -2.00
Press return to continue.
-----------------------------------
Q :
+0.5000 -0.7028 +0.4900 -0.1265
+0.5000 -0.2343 -0.7547 +0.3542
+0.5000 +0.3904 -0.1462 -0.7591
+0.5000 +0.5466 +0.4110 +0.5313
R :
+2.0000 -1.0000 +21.0000 -49.0000
+0.0000 +6.4031 -12.0254 +107.6037
+0.0000 -0.0000 +12.3446 -45.2848
-0.0000 -0.0000 +0.0000 +21.2539
Press return to continue.
-----------------------------------
Q_T :
+5.0000e-01 +5.0000e-01 +5.0000e-01 +5.0000e-01
-7.0278e-01 -2.3426e-01 +3.9043e-01 +5.4661e-01
+4.8999e-01 -7.5475e-01 -1.4621e-01 +4.1096e-01
-1.2651e-01 +3.5423e-01 -7.5907e-01 +5.3135e-01
invR :
+5.0000e-01 +7.8087e-02 -7.7450e-01 -8.9281e-01
+0.0000e+00 +1.5617e-01 +1.5213e-01 -4.6653e-01
-0.0000e+00 -0.0000e+00 +8.1007e-02 +1.7260e-01
-0.0000e+00 -0.0000e+00 +0.0000e+00 +4.7050e-02
Press return to continue.
-----------------------------------
Solving this system yields a unique
least squares solution, namely
x = invR * Q_T * b :
+4.43
+1.31
-0.73
-0.14
The Cubic equation Curve to Data :
s = +4.429 +1.307*t -0.732*t**2 -0.139*t**2
Press return to continue.