Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00b.c
/* --------------------------------- */
/* save as c00b.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fb.h"                 /* Try fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
double  M = LT_dt(F_t, a,b, LOOP, s);

 clrscrn();  
 printf(" The Laplace transform of F(t) is f(s) \n\n" 
        "            / oo                         \n" 
        "           |                             \n" 
        " L{F(t)} = |    exp(-s t) F(t) dt = f(s) \n" 
        "           |                             \n" 
        "           /  0                        \n\n");
 
 
 printf(" Divide by t  property of the Laplace transform is :\n\n"
        "                /+oo        \n"
        " L{F(t)/t}  =  |  f(u) du   \n"
        "               /s          \n\n");
 stop();

 clrscrn();
 printf("       /+oo                          /+oo                      \n"
        "      |     exp(-s t) [F(t)/t] dt = |  f(u) du \twith s = %+.3f\n"
        "      /0                            /s                       \n\n"
                      , s); 
        
 printf(" If   F(t)   : t-> %s " 
        " Then F(t)/t : t-> %s  \n\n", Feq, F_teq);     

 printf("       /+oo                              \n"
        " Then |     exp(-s t) [%s] dt = (%+.3f)  \n" 
        "      /0                               \n\n", F_teq, M); 
        
 printf("                      /+oo          \n"
        " And :   L{F(t)/t} = |  f(u) du     \n"
        "                     /s           \n\n"
        "                   = %s             \n"
        "                   = (%+.3f)      \n\n", 
                                 f_seq, f_s(s));  
        
 printf(" Mathematica Code\n\n"
        " %s \n\n", Mathematica_eq);    
 stop(); 
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 The Laplace transform of F(t) is f(s) 

            / oo                         
           |                             
 L{F(t)} = |    exp(-s t) F(t) dt = f(s) 
           |                             
           /  0                        

 Divide by t  property of the Laplace transform is :

                /+oo        
 L{F(t)/t}  =  |  f(u) du   
               /s          

 Press return to continue.


Exemple de sortie écran :

       /+oo                          /+oo                      
      |     exp(-s t) [F(t)/t] dt = |  f(u) du 	with s = +2.000
      /0                            /s                       

 If   F(t)   : t-> t  Then F(t)/t : t-> t /t  

       /+oo                              
 Then |     exp(-s t) [t /t] dt = (+0.500)  
      /0                               

                      /+oo          
 And :   L{F(t)/t} = |  f(u) du     
                     /s           

                   = 1/s             
                   = (+0.500)      

 Mathematica Code

 integrate exp(-s *t) * (t /t) dt from t=0  to infinity 

 Press return to continue.