Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00a.c
/* --------------------------------- */
/* save as c00a.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fb.h"                 /* Try  fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
 clrscrn();  
 printf(" The Laplace transform of F(t) is f(s) \n\n" 
        "            / oo                         \n" 
        "           |                             \n" 
        " L{F(t)} = |    exp(-s t) F(t) dt = f(s) \n" 
        "           |                             \n" 
        "           /  0                      \n\n\n");
 
 
 printf(" Multiplication by t^n  property of the Laplace transform is :\n\n"
        "   L{t^n F(t)}  =  (-1)^n f^n(s) :                            \n\n");
 stop();
 
 clrscrn(); 
 printf(" If  F(t) : t-> %s  then  f(s) = %s\n\n", Feq, feq);  
 
 printf(" Then with n = 1 :\n\n"
        "            L{t F(t)} = -1 f'(s)\n"
        "                      = %s       \n"
        "                      = %s     \n\n", f_seq,f2seq);

 printf(" With  s = (%+.3f) \n\n", s);
 
 printf(" Then  -1 f'(s) = %s = (%+.3f)\n\n", f2seq, f_s(s)); 
 
 stop();
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 The Laplace transform of F(t) is f(s) 

            / oo                         
           |                             
 L{F(t)} = |    exp(-s t) F(t) dt = f(s) 
           |                             
           /  0                      


 Multiplication by t^n  property of the Laplace transform is :

   L{t^n F(t)}  =  (-1)^n f^n(s) :                            

 Press return to continue.


Exemple de sortie écran :

 If  F(t) : t-> t  then  f(s) = (1/s^2)

 Then with n = 1 :

            L{t F(t)} = -1 f'(s)
                      = -1*(-2/s**3)       
                      = 2/s**3     

 With  s = (+0.600) 

 Then  -1 f'(s) = 2/s**3 = (+9.259)

 Press return to continue.