Sommaire


Installer ce fichier dans votre répertoire de travail.

Texte de la légende
fb.h
/* --------------------------------- */
/* save as fb.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  = .6;
/* --------------------------------- */
double F(
double t)
{
       return( (t) );
}
char  Feq[] =  "t";
/* --------------------------------- */
double tF(
double t)
{
   return(      (t *t) );
}
char  tFeq[] =  "t *t";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s)));
}
char  feq[] =  "(1/s^2)";
/* --------------------------------- */
double f_s(
double s)
{
 return(         -1. *(-2./pow(s,3)) );
}
char  f_seq[] = "-1*(-2/s**3)";
char  f2seq[] = "2/s**3";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate exp(-s *t) * (t *t) dt"
     " from t=0  to infinity";
/* --------------------------------- */       
/* --------------------------------- */
fc.h
/* --------------------------------- */
/* save as fc.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  = 1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( pow(t,2) );
}
char  Feq[] =  "t**2";
/* --------------------------------- */
double tF(
double t)
{
        return( (t *pow(t,2)) );
}
char  tFeq[] =  "t *t**2";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
      return(    2./pow(s,3));
}
char  feq[] =  "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
         return(  -1. *(-6./pow(s,4)) );
}
char  f_seq[] =  "-1 *(-6/s^4)";
char  f2seq[] =  "6/s^4";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *t^2) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fd.h
/* --------------------------------- */
/* save as fd.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  = 1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( pow(t,3) );
}
char  Feq[] =  "t**3";
/* --------------------------------- */
double tF(
double t)
{
        return( (t *pow(t,3)) );
}
char  tFeq[] =  "t *t**3";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
        return( 6./pow(s,4));
}
char  feq[] =  "6/s^4";
/* ---------------------------------- */
double f_s(
double s)
{
         return(  -1. *(-24./pow(s,5)));
}
char  f_seq[] =  "-1 *(-24/s^5)";
char  f2seq[] =  "24/s^5";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *t^3) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fe.h
/* --------------------------------- */
/* save as fe.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  =   1./2.;
/* --------------------------------- */
double F(
double t)
{
       return( (pow(t,4)) );
}
char  Feq[] =  "t**4";
/* --------------------------------- */
double tF(
double t)
{
        return( t *(pow(t,4)) );
}
char  tFeq[] =  "t *t**4";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return(24./pow(s,5));
}
char  feq[] =  "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
        return(   -1 *(-120/pow(s,6)));
}
char  f_seq[] =  "-1 *(-120/s^6)";
char  f2seq[] =  "120/s^6";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *t**4) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
ff.h
/* --------------------------------- */
/* save as ff.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  =  1./4.;
/* --------------------------------- */
double F(
double t)
{
       return( (sin(t)) );
}
char  Feq[] =  "sin(t)";
/* --------------------------------- */
double tF(
double t)
{
       return(  (t *sin(t)) );
}
char  tFeq[] =  "t *sin(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s+1.)));
}
char  feq[] =  "(1/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  -1 *(-(2*s)/pow(pow(s,2)+1,2)) );
}
char  f_seq[] =  "-1 -(2 s)/(s^2+1)^2";
char  f2seq[] =  "(2 s)/(s^2+1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *sin(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fg.h
/* --------------------------------- */
/* save as fg.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  =  1./4.;
/* --------------------------------- */
double F(
double t)
{
        return( (cos(t)) );
}
char  Feq[] =   "cos(t)";
/* --------------------------------- */
double tF(
double t)
{
        return(  (t *cos(t)) );
}
char  tFeq[] =   "t *cos(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(pow(s,2)+1.)));
}
char  feq[] =  "(s/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  -1 *(-(pow(s,2)-1)/pow(pow(s,2)+1,2))  );
}
char  f_seq[] =  "-1 -(s^2-1)/(s^2+1)^2";
char  f2seq[] =  "(s^2-1)/(s^2+1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *cos(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fh.h
/* --------------------------------- */
/* save as fh.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (sinh(t)) );
}
char  Feq[] =  "sinh(t)";
/* --------------------------------- */
double tF(
double t)
{
        return( (t *sinh(t)) );
}
char  tFeq[] =  "t *sinh(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(pow(s,2)-1.)));
}
char  feq[] =  "(1/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(    -1 *(-(2*s)/pow(pow(s,2)-1,2) ) );
}
char  f_seq[] =  "-1 *(-(2 s)/(s^2-1)^2)";
char  f2seq[] =  "(2 s)/(s^2-1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *sinh(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fi.h
 
/* --------------------------------- */
/* save as fi.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
       return( (cosh(t)) );
}
char  Feq[] =  "cosh(t)";
/* --------------------------------- */
double tF(
double t)
{
        return( (t *cosh(t)) );
}
char  tFeq[] =  "t *cosh(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return( s/(pow(s,2)-1));
}
char  feq[] =  "(s/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(     -1 *(-(pow(s,2)+1)/pow(pow(s,2)-1,2)) );
}
char  f_seq[] =  "-1 -(s^2+1)/(s^2-1)^2";
char  f2seq[] =  "(s^2+1)/(s^2-1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(t *cosh(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fj.h
/* --------------------------------- */
/* save as fj.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  3.;
/* --------------------------------- */
double F(
double t)
{
        return( (exp(t)) );
}
char  Feq[] =  "exp(t)";
/* --------------------------------- */
double tF(
double t)
{
        return( (t *exp(t)) );
}
char  tFeq[] =  "t *exp(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s-1.)));
}
char  feq[] =  "1/(s-1)";
/* ---------------------------------- */
double f_s(
double s)
{
      return(     -1 *(-1/pow(s-1,2))  );
}
char  f_seq[] =  "-1 (-1/(s-1)^2)";
char  f2seq[] =  "1/(s-1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate exp(-s *t) * (t *exp(t)) dt"
     " from t=a  to infinity";
/* --------------------------------- */
/* ---------------------------------- */