Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00b.c
/* --------------------------------- */
/* save as c00b.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fa.h"                 /* Try fa.h, fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
double  M = LT_dt( Gt_mns_G0, a,b, LOOP, s);

 clrscrn();  
 printf(" If f(s) is the Laplace transform of F(t)\n"
        " If G(t) is a primitive of F(t) :      \n\n"        
        "              /t                      \n"
        "             |                        \n"
        " Then        |  F(U) dU = G(t)-G(0)   \n"
        "             |                        \n"
        "            /0                      \n\n");

 printf("              /t                 \n"
        "             |             f(s)  \n"
        " Compute : L{|  F(U) dU} = ----  \n"
        "             |              s    \n"
        "            /0                 \n\n");
        
 printf("              /+oo                              \n"
        "             |                             f(s) \n"
        " Or          |  exp(-s t) [G(t)-G(0)] dt = ---- \n"
        "             |                              s   \n"
        "             /0                               \n\n");
 
 stop();

 clrscrn();
 printf("       /+oo                                   \n"
        "      |     exp(-s t) [G(t)-G(0)] dt = f(s)/s \n"
        "      /0                                  \n\n\n"); 
        
 printf(" If   F(t) : t-> %s " 
        " Then G(t) : t-> %s  with  s = (%+.3f)\n\n", Feq, Geq, s);     

 printf("       /+oo                              \n"
        " Then |     exp(-s t) [%s] dt = (%+.3f)  \n" 
        "      /0                             \n\n\n", Gt_mns_G0eq, M); 
        
 printf(" And : \n\n"
        " f(s)/s = %s = (%+.3f)\n\n\n", f_seq, f_s(s));   
        
 printf(" Mathematica Code\n\n"
        " %s \n\n", Mathematica_eq);    
 stop(); 
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 If f(s) is the Laplace transform of F(t)
 If G(t) is a primitive of F(t) :      

              /t                      
             |                        
 Then        |  F(U) dU = G(t)-G(0)   
             |                        
            /0                      

              /t                 
             |             f(s)  
 Compute : L{|  F(U) dU} = ----  
             |              s    
            /0                 

              /+oo                              
             |                             f(s) 
 Or          |  exp(-s t) [G(t)-G(0)] dt = ---- 
             |                              s   
             /0                               

 Press return to continue.


Exemple de sortie écran :

       /+oo                                   
      |     exp(-s t) [G(t)-G(0)] dt = f(s)/s 
      /0                                  


 If   F(t) : t-> (1)  Then G(t) : t-> (t)  with  s = (+2.000)

       /+oo                              
 Then |     exp(-s t) [t-0] dt = (+0.250)  
      /0                             


 And : 

 f(s)/s = (1/s)*(1/s) = (+0.250)


 Mathematica Code

 integrate e**(-s*t) * (t-0) dt from t=0 to infinity 

 Press return to continue. .