Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00a.c
/* --------------------------------- */
/* save as c00a.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fa.h"                  /* Try fa.h, fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
double  M = LT_dt(   F, a,b, LOOP, s);

 clrscrn();  
 printf(" Laplace transform of F(t)\n\n\n");
 printf("     / oo\n");
 printf("    |\n");
 printf("    |    exp(-s t) F(t) dt = f(s)\n");
 printf("    |\n");
 printf("   /  0\n\n\n");
 
 printf(" If  F(t) : t-> %s  then f(s) = %s\n\n\n", Feq, feq);
 
  printf(" Mathematica Code\n\n"
        " %s \n\n\n\n", Mathematica_eq); 
 stop();
 
 clrscrn();  
 printf(" Laplace transform of F(t)\n\n");
 printf("     / oo\n");
 printf("    |\n");
 printf("    |    exp(-s t) F(t) dt = f(s)\n");
 printf("    |\n");
 printf("   /  0\n\n\n");
 printf(" If  F(t) : t-> %s  then  f(s) = %s\n\n", Feq, feq);  
 printf(" and with  s = (%+.3f) and a = (%+.3f)\n\n", s, aa);
 printf("     / oo\n");
 printf("    |\n");
 printf("    | exp(-s t) %s dt = %.3f = f(s) = %.3f\n", 
                              Feq, M, f(s));
 printf("    |\n");
 printf("   /  0\n\n");
 
 printf(" Then f(s) s-> %s   is Laplace transform of F(t) : t-> %s\n\n",
          feq, Feq);
 stop();
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 Laplace transform of F(t)


     / oo
    |
    |    exp(-s t) F(t) dt = f(s)
    |
   /  0


 If  F(t) : t-> (a)  then f(s) = (a/s)


 Mathematica Code

 integrate e**(-s*t)*(a) dt from t=0 to infinity 



 Press return to continue.


Exemple de sortie écran :

 Laplace transform of F(t)

     / oo
    |
    |    exp(-s t) F(t) dt = f(s)
    |
   /  0


 If  F(t) : t-> (a)  then  f(s) = (a/s)

 and with  s = (+0.500) and a = (+2.000)

     / oo
    |
    | exp(-s t) (a) dt = 4.000 = f(s) = 4.000
    |
   /  0

 Then f(s) s-> (a/s)   is Laplace transform of F(t) : t-> (a)

 Press return to continue.