Mathc initiation/a386
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ---------------------------------- */
/* save as c00a.c */
/* ---------------------------------- */
#include "x_afile.h"
#include "fa.h"
/* ---------------------------------- */
int main(void)
{
double i;
clrscrn();
printf(" Limit comparison test. \n\n\n");
printf(" Let S.a_n and S.b_n be positive-term series. \n\n");
printf(" If there is a positive real number c such that \n\n\n");
printf(" lim n->oo (a_n/b_n) = c >0 \n\n\n");
printf(" The either both series converge or both series diverge.\n\n");
stop();
clrscrn();
printf("# Copy and past this file into the screen of gnuplot\n\n"
" set zeroaxis lt 3 lw 1\n"
" set grid\n"
" plot [0.:20.] [-.01:0.1]\\\n"
" %s,\\\n"
" %s\n\n"
" reset\n\n",a_xeq, b_xeq);
stop();
clrscrn();
printf(" a_n : n-> %s\n\n", a_neq);
printf(" b_n : n-> %s\n\n", b_neq);
printf(" c_n : n-> a_n/b_n\n\n");
for(i=1; i<10; i++)
printf(" c_%.0f = %5.3f || c_%.0f = %5.6f || c_%.0f = %5.8f\n",
i, a_n(i)/b_n(i),
i*10, a_n(i*10)/b_n(i*10),
i*1000,a_n(i*1000)/b_n(i*1000) );
printf("\n\n");
stop();
clrscrn();
printf(" a_n : n-> %s \n\n", a_neq);
printf(" b_n : n-> %s\n\n\n", b_neq);
printf(" Since S.b_n converge p-series with p = 5/2 >1.\n\n");
printf(" It follows from the theorem that S.a_n is \n\n");
printf(" also converge. \n\n\n");
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Exemple de sortie écran :
Limit comparison test.
Let S.a_n and S.b_n be positive-term series.
If there is a positive real number c such that
lim n->oo (a_n/b_n) = c >0
The either both series converge or both series diverge.
Press return to continue.
Exemple de sortie écran :
# Copy and past this file into the screen of gnuplot
set zeroaxis lt 3 lw 1
set grid
plot [0.:20.] [-.01:0.1]\
(8.*x + sqrt(x)) / (5 + x**2 + x**(7./2.)),\
1/x**(5./2.)
reset
Press return to continue.
Exemple de sortie écran :
a_n : n-> (8.*n + sqrt(n)) / (5 + n**2 + n**(7./2.))
b_n : n-> 1/n**(5./2.)
c_n : n-> a_n/b_n
c_1 = 1.286 || c_10 = 8.048970 || c_1000 = 8.03136880
c_2 = 4.849 || c_20 = 8.131557 || c_2000 = 8.02227099
c_3 = 6.601 || c_30 = 8.132805 || c_3000 = 8.01820862
c_4 = 7.302 || c_40 = 8.125893 || c_4000 = 8.01577970
c_5 = 7.628 || c_50 = 8.118413 || c_5000 = 8.01411947
c_6 = 7.804 || c_60 = 8.111622 || c_6000 = 8.01289270
c_7 = 7.907 || c_70 = 8.105669 || c_7000 = 8.01193861
c_8 = 7.974 || c_80 = 8.100474 || c_8000 = 8.01116914
c_9 = 8.018 || c_90 = 8.095921 || c_9000 = 8.01053154
Press return to continue.
Exemple de sortie écran :
a_n : n-> (8.*n + sqrt(n)) / (5 + n**2 + n**(7./2.))
b_n : n-> 1/n**(5./2.)
Since S.b_n converge p-series with p = 5/2 >1.
It follows from the theorem that S.a_n is
also converge.
Press return to continue.