Mathc initiation/a205
Installer et compiler ces fichiers dans votre répertoire de travail.
c00b.c |
---|
/* ------------------------------------ */
/* Save as : c00b.c */
/* ------------------------------------ */
#include "x_hfile.h"
#include "fb.h"
/* ------------------------------------ */
int main(void)
{
tvalue t;
t.min = 0.; /* a */
t.max = PI; /* b */
t.step = 0.1;
CTRL_splot p;
p.xmin = -2;
p.xmax = 2;
p.ymin = -2;
p.ymax = 2;
double sector = 2.5;
int n = 2*50;
clrscrn();
printf(" If r is continuous on [a,b], \n\n"
" where 0 <= a < b <= 2Pi, \n\n"
" then the area A of the region bounded by the \n"
" graphs of r with t = a and t = b is \n\n"
" / b \n"
" | \n"
" A = | 1/2 r(t)^2 dt \n"
" | \n"
" / a \n\n\n");
stop();
clrscrn();
printf(" r : t-> %s\n\n", req);
G_polar_areaf(
p,
r,
t,
sector
);
printf(" Draw a typical circular sector.\n\n");
printf(" ... load \"a_main.plt\" ... with gnuplot. \n\n");
printf(" Express the area of the sector as :\n\n");
printf(" radius : %s\n",req);
printf(" angle : dt\n\n");
printf(" Area of the sector : 1/2 (%s)^2 dt\n",req);
printf("\n");
stop();
clrscrn();
printf(" If we apply \n\n\n");
printf(" / %.2f\n",t.max);
printf(" | \n");
printf(" | \n");
printf(" / %.2f\n\n\n",t.min);
printf(" to : 1/2 (%s)^2 dt\n\n\n",req);
printf(" We obtain the area of the region Rt.\n\n");
printf(" / %.2f\n",t.max);
printf(" | \n");
printf(" | 1./2.*(%s)^2 dt = %.6f\n",
req,simpson(SectorArea,t.min,t.max,n));
printf(" | \n");
printf(" / %.2f\n\n\n",t.min);
stop();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
If r is continuous on [a,b],
where 0 <= a < b <= 2Pi,
then the area A of the region bounded by the
graphs of r with t = a and t = b is
/ b
|
A = | 1/2 r(t)^2 dt
|
/ a
Press return to continue.
Exemple de sortie écran :
r : t-> 2*cos(t)
Draw a typical circular sector.
To see the graph, open the file "a_main.plt" with Gnuplot.
Express the area of the sector as :
radius : 2*cos(t)
angle : dt
Area of the sector : 1/2 (2*cos(t))^2 dt
Press return to continue.
Exemple de sortie écran :
If we apply
/ 3.14
|
|
/ 0.00
to : 1/2 (2*cos(t))^2 dt
We obtain the area of the region Rt.
/ 3.14
|
| 1./2.*(2*cos(t))^2 dt = 3.141593
|
/ 0.00
Press return to continue.