Mathc initiation/Fichiers h : x 70cb
Installer et compiler ces fichiers dans votre répertoire de travail.
c16b.c |
---|
/* ---------------------------------- */
/* save as c16b.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fa.h"
/* ---------------------------------- */
int main(void)
{
pt3d Prst = {2,1,0};
clrscrn();
printf("Chaine Rules : If U = f(x,y,z) with\n\n"
" x = g(r,s,t), \n"
" y = h(r,s,t), \n"
" z = i(r,s,t)\n\n"
" and if f, g, h and i are differentiable then \n\n"
" ----------------------------------\n"
" dU @U @x @U @y @U @z |\n"
" -- = -- -- + -- -- + -- -- |\n"
" dr @x @r @y @r @z @r |\n"
" ----------------------------------\n"
" dU @U @x @U @y @U @z |\n"
" -- = -- -- + -- -- + -- -- |\n"
" ds @x @s @y @s @z @s |\n"
" ----------------------------------\n"
" dU @U @x @U @y @U @z |\n"
" -- = -- -- + -- -- + -- -- |\n"
" dt @x @t @y @t @z @t |\n"
" ----------------------------------\n\n");
stop();
/* ---------------------------------- */
clrscrn();
printf(" U : x,y,z-> %s\n\n",Ueq);
printf(" x : r,s,t-> %s\n", Xeq);
printf(" y : r,s,t-> %s\n",Yeq);
printf(" z : r,s,t-> %s\n\n",Zeq);
printf(" DU_s(%.0f,%.0f,%.0f) = %0.9f\n\n\n\n",Prst.x,Prst.y,Prst.z,
implicitDu_s(U,
X,
Y,
Z,
H,
Prst));
printf(" f : r,s,t-> %s\n\n",feq);
printf(" f_s(%.0f,%.0f,%.0f) = %0.9f\n\n",Prst.x,Prst.y,Prst.z,
fxyz_y(f,H,Prst));
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Exemple de sortie écran :
Chaine Rules : If U = f(x,y,z) with
x = g(r,s,t),
y = h(r,s,t),
z = i(r,s,t)
and if f, g, h and i are differentiable then
----------------------------------
dU @U @x @U @y @U @z |
-- = -- -- + -- -- + -- -- |
dr @x @r @y @r @z @r |
----------------------------------
dU @U @x @U @y @U @z |
-- = -- -- + -- -- + -- -- |
ds @x @s @y @s @z @s |
----------------------------------
dU @U @x @U @y @U @z |
-- = -- -- + -- -- + -- -- |
dt @x @t @y @t @z @t |
----------------------------------
Press return to continue.
Exemple de sortie écran :
U : x,y,z-> x**4*y+y**2*z**3
x : r,s,t-> r*s*exp(t)
y : r,s,t-> r*s**2*exp(-t)
z : r,s,t-> r**2*s*sin(t)
DU_s(2,1,0) = 192.000000320
f : r,s,t-> (r*s*exp(t))**4*r*s**2*exp(-t)+
r*s**2*exp(-t)**2*r**2*s*sin(t)**3
f_s(2,1,0) = 192.000006400
Press return to continue