Mathc initiation/Fichiers h : x 66cb


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c016b.c
/* ---------------------------------- */
/* save as c16b.c                     */
/* ---------------------------------- */
#include "x_hfile.h"
#include       "fb.h"
/* ---------------------------------- */
int main(void)
{
pt2d  p1 = {2,1};

/* ---------------------------------- */
 clrscrn();
 
 printf("   Implicit differentiation.\n\n" 
 
        "            ****************\n\n"

 " If an equation F(x,y) = 0 determines,\n"
 " implicitly, a differentiable function g of\n"
 " one variable x such that y = g(x) then \n\n"

 
 "       dy      F_x(x,y)\n"
 "       --  = - --------\n"
 "       dx      F_y(x,y)\n\n");
 stop();

/* ---------------------------------- */
 clrscrn();
 printf("  f   : x,y-> %s\n\n\n\n",feq);

 printf("  In first verify that the point p(%0.2f,%0.2f)\n\n", p1.x,p1.y);
 printf("  satisfy the equation.\n\n");
 printf("  f(%0.2f,%0.2f) = %0.9f\n\n\n", 
           p1.x,p1.y,f(p1.x,p1.y));

 printf("  Now you can compute : y'](%0.2f,%0.2f)\n\n\n",p1.x,p1.y);

 printf("  y'](%0.2f,%0.2f) = %0.9f      with %s \n\n",
           p1.x,p1.y,dy(p1.x,p1.y),dyeq);
 printf("  y'](%0.2f,%0.2f) = %0.9f      with implicitDy(); \n\n",
           p1.x,p1.y, implicitDy(f,H,p1));

 stop();

 return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */



Exemple de sortie écran :
   Implicit differentiation.

            ****************

 If an equation F(x,y) = 0 determines,
 implicitly, a differentiable function g of
 one variable x such that y = g(x) then 

       dy      F_x(x,y)
       --  = - --------
       dx      F_y(x,y)

 Press return to continue.


Exemple de sortie écran :
  f   : x,y-> 4*y**2 + 9*x**2 - 40



  In first verify that the point p(2.00,1.00)

  satisfy the equation.

  f(2.00,1.00) = 0.000000000


  Now you can compute : y'](2.00,1.00)


  y'](2.00,1.00) = -4.500000000      with -9*x / 4*y 

  y'](2.00,1.00) = -4.500000000      with implicitDy(); 

 Press return to continue.