Mathc initiation/Fichiers h : x 21c1b
Installer et compiler ces fichiers dans votre répertoire de travail.
c1b.c |
---|
/* ---------------------------------- */
/* save as c1b.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fb.h"
/* --------------------------------- */
int main(void)
{
double n;
double a;
double b;
double y0;
n = 10.0;
a = 1.0;
b = 2.0;
y0 = 3.0;
clrscrn();
printf(" Runge Kutta's method to approximate the solution\n"
" of the differential equation.\n\n"
" y' = %s\n\n",Ypeq);
p_RungeKutta_Method(a,
b,
n,
y0,
Yp);
printf(" y_n = %.10f\n\n",
RungeKutta_Method(a,
b,
n,
y0,
Yp)
);
printf(" The exact value is y = 7.38629\n\n");
stop();
clrscrn();
n = 9.0;
printf(" Runge Kutta's method to approximate the solution\n"
" of the differential equation\n\n"
" y' = %s,\n\n with n = %.0f \n\n",Ypeq, n);
printf(" y_n = %.10f\n\n",
RungeKutta_Method(a,
b,
n,
y0,
Yp)
);
printf(" The exact value is y = 7.38629\n\n");
stop();
return 0;
}
/* --------------------------------- */
/* --------------------------------- */
Calculons la solution numérique de l'équation
y' = 1 + y/x pour 1 < x < 2
avec comme condition initial y0 = 3. quand x = 1
Exemple de sortie écran 1 :
Runge Kutta's method to approximate the solution
of the differential equation.
y' = 1 + y/x
k | x_k | y_k
--------------------------
1 | 1.100 | 3.4048
2 | 1.200 | 3.8188
3 | 1.300 | 4.2411
4 | 1.400 | 4.6711
5 | 1.500 | 5.1082
6 | 1.600 | 5.5520
7 | 1.700 | 6.0021
8 | 1.800 | 6.4580
9 | 1.900 | 6.9195
10 | 2.000 | 7.3863
y_n = 7.3862928864
The exact value is y = 7.38629
Press return to continue.
Exemple de sortie écran : 2
Runge Kutta's method to approximate the solution
of the differential equation
y' = 1 + y/x,
with n = 9
y_n = 7.3862921293
The exact value is y = 7.38629
Press return to continue.