Mathc initiation/Fichiers h : c65a3


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00b.c
/* --------------------------------- */
/* save as c00b.c                    */
/* --------------------------------- */
#include "x_hfile.h"
#include      "fa.h"
/* --------------------------------- */
int main(void)
{
CTRL_splot p;
	
p.xmin  =  4,   p.xmax    =   8;
p.ymin  = -8,   p.ymax    =  -4;
p.zmin  = -2,   p.zmax    =   2;
p.rot_x = 59,   p.rot_z   = 247;
p.scale =  1,   p.scale_z =   1;

pt2d Q = i_pt2d(5.5,-5.5);

int  n = 5;
pt2d R = newton_fxy(  n,
                      f_x,
                      f_y,
                      Q);
                      
pt2d step = i_pt2d(.1,.1);                      

 clrscrn();
 printf(" Let f be a function of two variables        \n\n");
 printf(" that has continuous second partial derivatives\n");
 printf(" throughout an open disk R containing (a,b). \n\n");
 printf(" If  f_x(a,b) = f_y(a,b) = 0 and             \n\n");
 printf(" Hessian(a,b) > 0                            \n\n");
 printf(" then f(a,b) is                            \n\n\n");
 printf("   (I)  a local maximum of f if f_xx(a,b) < 0\n\n");
 printf("   (II) a local minimum of f if f_xx(a,b) > 0\n\n\n\n");
 getchar();

 clrscrn();
 printf(" We have seen that we can take has first approximation,\n");
 printf(" the point p(%.3f,%.3f)  \n\n\n",Q.x,Q.y);
 printf(" Use Newton's method to approximate,\n");
 printf(" the solutions of the following system :\n\n");
 printf(" Where the first equation is f_x, and the second f_y\n\n\n");
 printf("  | %s = 0    \n", f_xeq);
 printf("  | %s = 0\n\n\n", f_yeq);
 printf(" the solutions of the following system is :\n\n\n");
 printf("         x = %f  y = %f  \n\n\n",R.x,R.y);
 getchar();

 clrscrn();
 printf(" Verify if f_x(a,b) = f_y(a,b) = 0.\n\n\n");
 printf(" f   : x,y-> %s\n\n\n",   feq  );
 printf(" f_x(%0.2f,%0.2f) = %0.9f    \n\n",R.x,R.y, fxy_x(f,H,R));
 printf(" f_y(%0.2f,%0.2f) = %0.9f  \n\n\n",R.x,R.y, fxy_y(f,H,R));
 getchar();

 clrscrn();
 printf(" Verify if Hessian(a,b) > 0\n\n\n");
 printf(" f   : x,y-> %s\n\n\n",   feq  );
 printf(" Hessian(%0.2f,%0.2f) = %0.9f    \n\n",R.x,R.y,Hessian(f,f_xy,R) );
 getchar();

 clrscrn();
 printf(" if f_xx(a,b) < 0 then it is  a local maximum.\n\n");
 printf(" if f_xx(a,b) > 0 then it is  a local minimum\n\n\n\n");
 printf(" f   : x,y-> %s\n\n\n",   feq  );
 printf(" f_xx(%0.2f,%0.2f) = %0.9f\n\n\n\n",R.x,Q.y, fxy_xx(f,H,R));
 printf("   You can use f_yy instead of f_xx.\n\n");
 printf(" f_yy(%0.2f,%0.2f) = %0.9f    \n\n",R.x,R.y, fxy_yy(f,H,R));
 getchar();

 clrscrn();
 printf(" f : (x,y)-> %s\n\n\n", feq);

     G_3d_pxy(  p,
                feq,f,
                R,step);

 printf(" ... load \"a_main.plt\" ... with gnuplot.  \n\n");
 
 stop();

 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran 1 :

 Let f be a function of two variables        

 that has continuous second partial derivatives
 throughout an open disk R containing (a,b). 

 If  f_x(a,b) = f_y(a,b) = 0 and             

 Hessian(a,b) > 0p.                        

 then f(a,b) is                            


   (I)  a local maximum of f if f_xx(a,b) < 0

   (II) a local minimum of f if f_xx(a,b) > 0


Exemple de sortie écran 1 :

 We have seen that we can take has first approximation,
 the point p(5.500,-5.500)  


 Use Newton's method to approximate,
 the solutions of the following system :

 Where the first equation is f_x, and the second f_y


  | -sin(x) = 0    
  | -sin(y) = 0


 the solutions of the following system is :


         x = 6.283185  y = -6.283185


Exemple de sortie écran 1 :

 Verify if f_x(a,b) = f_y(a,b) = 0.


 f   : x,y-> cos(x)+cos(y)


 f_x(6.28,-6.28) = 0.000000000    

 f_y(6.28,-6.28) = 0.000000000


Exemple de sortie écran 1 :

 Verify if D(a,b) > 0


 f   : x,y-> cos(x)+cos(y)


 Hessian(6.28,-6.28) = 0.999999988


Exemple de sortie écran 1 :

   if f_xx(a,b) < 0 then it is  a local maximum.

 if f_xx(a,b) > 0 then it is  a local minimum



 f   : x,y-> cos(x)+cos(y)


 f_xx(6.28,-5.50) = -0.999999994



   You can use f_yy instead of f_xx.

 f_yy(6.28,-6.28) = -0.999999994


Exemple de sortie écran 1 :

 f : (x,y)-> cos(x)+cos(y)


 Open the file "a_main.plt" with gnuplot.

 Press return to continue.