Mathc initiation/Fichiers h : c42fb
Installer et compiler ces fichiers dans votre répertoire de travail.
c00b.c |
---|
/* --------------------------------- */
/* save as c00b.c */
/* --------------------------------- */
#include "x_hfile.h"
#include "fb.h"
/* --------------------------------- */
int main(void)
{
CTRL_splot w;
w.xmin = -4.0; w.xmax = +4.00;
w.ymin = -2.0; w.ymax = +2.00;
double x = 0.0; /* x = (PI/2)-.2; */
double cstep = 0.1;
circle(1./K_y_2d(f,x),
h_y_2d(f,x),
k_y_2d(f,x),
cstep);
G_C_2d(w,
f,x,
feq
);
clrscrn();
printf(" If a smooth curve C is the graph"
" of y = %s \n"
" then the curvature K at P(x,y) is\n\n\n"
" K = |y''| / [1 + y'^2]^(3/2) \n\n\n"
" If P(x,y) is a point on the graph"
" of y = f(x) \n"
" at which K != 0. The point M(h,k)"
" is the center\n"
" of the cuvature for P if \n\n\n"
" h = x - y'[1 + y'^2] / y'' \n"
" k = y + [1 + y'^2] / y'' \n\n\n"
" The radius is r = 1/K \n\n\n"
" ... load \"a_main.plt\" ... with gnuplot. \n\n",feq);
stop();
return 0;
}
/* --------------------------------- */
/* --------------------------------- */
Exemple de sortie écran :
If a smooth curve C is the graph of y = cos(x)
then the curvature K at P(x,y) is
K = |y''| / [1 + y'^2]^(3/2)
If P(x,y) is a point on the graph of y = f(x)
at which K != 0. The point M(h,k) is the center
of the cuvature for P if
h = x - y'[1 + y'^2] / y''
k = y + [1 + y'^2] / y''
The radius is r = 1/K
Open the file "a_main.plt" with Gnuplot.
Press return to continue.