Mathc initiation/Fichiers h : c27bc


SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer ce fichier dans votre répertoire de travail.


Texte de la légende
fa.h
/* --------------------------------- */
/* save as  fa.h                     */
/* --------------------------------- */
double f(
double t)
{
        return(cos(t));
}
char  feq[] =  "cos(t)";
/* --------------------------------- */
double Df(
double t)
{
        return(-sin(t));
}
char  Dfeq[] =  "-sin(t)";
/* --------------------------------- */
double g(
double t)
{
        return(sin(t));
}
char  geq[] = "sin(t)";
/* --------------------------------- */
double Dg(
double t)
{
        return(cos(t));
}
char  Dgeq[] ="cos(t)";
/* --------------------------------- */
/* --------------------------------- */
double DgDf(
double t)
{
        return(Dg(t)/Df(t));
}
/* --------------------------------- */
/* --------------------------------- */
fb.h
/* --------------------------------- */
/* save as  fb.h                     */
/* --------------------------------- */
double f(
double t)
{
        return( 3*pow(sin(t),5) );
}
char  feq[] =  "3*pow(sin(t),5)";
/* --------------------------------- */
double Df(
double t)
{
        return(  15*cos(t)*pow(sin(t),4) );
}
char  Dfeq[] =  "15*cos(t)*pow(sin(t),4)";
/* --------------------------------- */
double g(
double t)
{
        return( 3*pow(cos(t),5) );
}
char  geq[] =  "3*pow(cos(t),5)";
/* --------------------------------- */
double Dg(
double t)
{
        return(  -15*sin(t)*pow(cos(t),4) );
}
char  Dgeq[] =  "-15*sin(t)*pow(cos(t),4)";
/* --------------------------------- */
/* --------------------------------- */
double DgDf(
double t)
{
        return(Dg(t)/Df(t));
}
/* --------------------------------- */
/* --------------------------------- */
fc.h
/* --------------------------------- */
/* save as  fc.h                     */
/* --------------------------------- */
double f(
double t)
{
double a=3;
double b=1;

        return( (a+b)*cos(t)-b*cos((a+b/b)*t) );
}
char  feq[] =  "(a+b)*cos(t)-b*cos((a+b/b)*t)";
/* --------------------------------- */
double Df(
double t)
{
double a=3;
double b=1;

        return( -(a+b)*sin(t)+b*sin((a+b/b)*t)*(a+b/b) );
}
char  Dfeq[] =  "-(a+b)*sin(t)+b*sin((a+b/b)*t)*(a+b/b)";
/* --------------------------------- */
double g(
double t)
{
double a=3;
double b=1;

        return( (a+b)*sin(t)-b*sin((a+b/b)*t) );
}
char  geq[] =  "(a+b)*sin(t)-b*sin((a+b/b)*t)";
/* --------------------------------- */
double Dg(
double t)
{
double a=3;
double b=1;

        return( (a+b)*cos(t)-b*cos((a+b/b)*t)*(a+b/b) );
}
char  Dgeq[] =  "(a+b)*cos(t)-b*cos((a+b/b)*t)*(a+b/b)";
/* --------------------------------- */
/* --------------------------------- */
double DgDf(
double t)
{
        return(Dg(t)/Df(t));
}
/* --------------------------------- */
/* --------------------------------- */
fd.h
/* --------------------------------- */
/* save as  fd.h                     */
/* --------------------------------- */
double f(
double t)
{
double a=3;
double b=1;

        return( (a-b)*cos(t)+b*cos((a-b/b)*t) );
}
char  feq[] =  "(a-b)*cos(t)+b*cos((a-b/b)*t)";
/* --------------------------------- */
double Df(
double t)
{
double a=3;
double b=1;

        return(  -(a-b)*sin(t)-b*sin((a-b/b)*t)*(a-b/b) );
}
char  Dfeq[] =  "-(a-b)*sin(t)-b*sin((a-b/b)*t)*(a-b/b)";
/* --------------------------------- */
double g(
double t)
{
double a=3;
double b=1;

        return( (a-b)*sin(t)-b*sin((a-b/b)*t) );
}
char  geq[] =  "(a-b)*sin(t)-b*sin((a-b/b)*t)";
/* --------------------------------- */
double Dg(
double t)
{
double a=3;
double b=1;

return(          (a-b)*cos(t)-b*cos((a-b/b)*t)*(a-b/b) );
}
char  Dgeq[] =  "(a-b)*cos(t)-b*cos((a-b/b)*t)*(a-b/b)";
/* --------------------------------- */
/* --------------------------------- */
double DgDf(
double t)
{
        return(Dg(t)/Df(t));
}
/* --------------------------------- */
/* --------------------------------- */
fe.h
/* --------------------------------- */
/* save as  fe.h                     */
/* --------------------------------- */
double f(
double t)
{
double a=2;
double k1=3;

        return( a*sin(k1*t) );
}
char  feq[] =  "a*sin(k1*t)";
/* --------------------------------- */
double Df(
double t)
{
double a=2;
double k1=3;

        return( a*cos(k1*t)*k1);
}
char  Dfeq[] =  "a*cos(k1*t)*k1";
/* --------------------------------- */
double g(
double t)
{
double b =3;
double k2=1;
        return( b*cos(k2*t) );
}
char  geq[] =  "b*cos(k2*t)";
/* --------------------------------- */
double Dg(
double t)
{
double b =3;
double k2=1;
        return(  -b*sin(k2*t)*k2 );
}
char  Dgeq[] =  "-b*sin(k2*t)*k2";
/* --------------------------------- */
/* --------------------------------- */
double DgDf(
double t)
{
        return(Dg(t)/Df(t));
}
/* --------------------------------- */
/* --------------------------------- */