Mathc initiation/Fichiers h : c17da

Sommaire

Calcul de int(f(x)) en fonction des bornes a et b avec n itérations . C'est la deuxième partie du calcul.
Simple intégrale Double intégrale
/* ---------------------------------- */
double trapezoid(
double (*P_f)(double x),
double a,
double b,
   int n
)
{



   int i = 0;
double m = 0.;
double M = 0.;

 for(i = 0; i <= n; i++)
 {
    if(i ==0 || i== n){m = 1.;}
  else                {m = 2.;}

  M += m * (*P_f)(a+i*(b-a)/n);
 }

  return( ((b -a)*M) / (2*n) );
}
/* ---------------------------------- */
/* ---------------------------------- */
double trapezoid_dydx(
double (*P_f)(double x, double y),
double a,
double b,
   int n,
double ay,
double by,
   int ny
)
{
   int i = 0;
double m = 0.;
double M = 0.;

 for(i = 0; i <= n; i++)
 {
    if(i ==0 || i== n){m = 1.;}
  else                {m = 2.;}

  M += m * int_dy((*P_f),(a+i*(b-a)/n), ay,by,ny);
 }                       /*    x     */

  return( ((b-a)*M) / (2*n) );
}
/* ---------------------------------- */

Comparons les deux fonctions.

Dans les deux premières colonnes, il y a la fonction de référence pour calculer une intégrale simple par la méthode des trapèzes. Dans les deuxièmes colonnes il y a deux fonctions pour calculer l'intégrale double. L'intégrale double est calculé par la fonction trapezoid_dydx(); qui appelle la fonction int_dy();


int_dy(); Cette fonction applique la méthode des trapèzes pour la variable y.

trapezoid_dydx(); Cette fonction applique la méthode des trapèzes pour la variable x.


En comparant ces deux fonctions à la fonction de référence, on voit immédiatement l'analogie qu'il existe entre ces fonctions.


Calcul de int(f(y)) en fonction des bornes ay et by avec ny itérations
Simple intégrale Double intégrale
/* ---------------------------------- */
double trapezoid(
double (*P_f)(double x),
double a,
double b,
   int n
)
{

   int i = 0;
double m = 0.;
double M = 0.;

 for(i = 0; i <= n; i++)
 {
    if(i ==0 || i== n){m = 1.;}
  else                {m = 2.;}

  M += m * (*P_f)(a+i*(b-a)/n);
 }

  return( ((b -a)*M) / (2*n) );
}
/* ---------------------------------- */
/* ---------------------------------- */
double int_dy(
double (*P_f)(double x, double y),
double x,
double ay,
double by,
   int ny
)
{
   int i = 0;
double m = 0.;
double M = 0.;

 for(i = 0; i <= ny; i++)
 {
    if(i ==0 || i== ny){m = 1.;}
  else                {m = 2.;}

  M += m * (*P_f)( x, ay+i*(by-ay)/ny);
 }                   /*    y        */

  return( ((by-ay)*M) / (2*ny) );
}
/* ---------------------------------- */